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Abstract 

The DAKOTA scheduling system has been proposed for use in the United States 

Air Forces Europe's (USAFE's) Operational Support Airlift (OSA) scheduling. This 

thesis examines the OSA scheduling topic and reviews the relevant literature on vehicle 

routing, concluding that exact methods are intractable for large problem sizes. 

Consequently, heuristic methods must be considered. This thesis takes a detailed look at 

the DAKOTA heuristic. It examines the concepts of Validation, Verification and 

Accreditation (VV&A), particularly as they apply to heuristics and algorithms. It then 

defines what measures of performance may prove useful in judging heuristics and 

algorithms in general, and details the statistical tests which can be used to make those 

comparisons. It discusses four of the predominant airlift scheduling models currently in 

use, and finally develops a methodology which can be used to evaluate a deterministic 

passenger airlift scheduling heuristic, using DAKOTA as a case study. 

VI 



PROCEDURES FOR TESTING DETERMINISTIC SCHEDULING MODELS: 

A DAKOTA CASE STUDY 

I. Introduction 

Background 

Prior to 1989, the Military Airlift Command (MAC) was responsible for most airlift 

missions in the United States Air Force. With the reorganization of MAC into the Air 

Mobility Command (AMC), AMC retained the strategic airlift mission while the majority 

of the theater airlift was divested to the theater commands. The United States Air Forces 

Europe (USAFE) picked up the roles of theater airlift and Operational Support Airlift 

(OSA) in the European theater. With these new responsibilities, HQ USAFE/DON 

(Operations Analysis) found that the Global Decision Support System (GDSS) command 

and control system was satisfactory for the scheduling of theater airlift missions (which 

primarily consisted of cargo missions), but GDSS was less appropriate for OSA. While 

investigating alternative means of scheduling the OSA missions, DON found that the Air 

Force Office of Scientific Research (AFOSR) had supported a grant to North Dakota 

State University (NDSU) to develop a logistics airlift (Logair) system. Based on this 

information and other considerations, DON arranged for AFOSR to extend that grant to 

develop a scheduling system for OSA airlift, known as DAKOTA. 



USAFE requested an automated system to assist in scheduling OSA passenger 

support. The system was to facilitate the scheduling of critical mission travel throughout 

Europe, the former Soviet Union, and Africa, as well as intercontinental flights to the 

United States. USAFE has a heterogeneous fleet of aircraft, including C-20, C-21, and 

T-43 airplanes. This fleet has differing capacities, endurance, and speed, with each 

aircraft allocated a fixed number of flying hours. The objective of the automated system 

is to maximize overall efficiency of the fleet, supporting the travel of as many eligible 

personnel as possible with the least amount of flight time, within the constraints of fleet 

size, total flying hours available, and other limitations. 

Currently, USAFE has twelve OSA aircraft available and schedules 

approximately six or seven missions each day. In order to schedule the OSA support, 

USAFE employs three schedulers on a full-time basis at its headquarters, with additional 

schedulers working at the wing and squadron levels. 

The DAKOTA software accepts requests for travel and information about airports, 

aircraft, and passengers. Missions can be scheduled manually, or automatically by 

utilizing the automated decision support module. A number of tools are provided in 

DAKOTA to facilitate the scheduler's task, including maps, tables, feasibility checking, a 

"greaseboard," and summaries of available flying hours. A relatively large database is 

involved for both relatively static information (airport runway lengths, hours of operation, 

aircraft capacities and aircraft operating characteristics) and dynamic information 

(passenger and aircraft status). DAKOTA'S optimization routine supports the work of the 



scheduler by accepting the input sets of travel requests and missions, and producing 

optimal and/or near-optimal candidate schedules for consideration by the scheduler. 

DON projects that successful implementation of DAKOTA may ultimately lead to 

its incorporation into GDSS for use in scheduling for the cargo mission as well. 

Additionally, the 89th Airlift Wing (ALW), responsible for presidential and DV 

(Distinguished Visitor) airlift support, is interested in the success of DAKOTA and its 

potential for their use. According to USAFE/DON, no other airlift scheduling models in 

use in the Air Force today have a built-in optimization routine. (Wilkinson, 1996) Ina 

fiscal environment of tightening budgets, a scheduling system which schedules OS A 

more efficiently has great promise. 

USAFE's OSA Mission 

USAFE's 76th Airlift Squadron (AS) has nine C-21s, two C-20s, and one T-43 to 

support the OSA mission. (Maher, 1996) The nine C-21s, which are small executive jets 

with approximately four hour endurance, are used to transport qualified personnel to 

different locations when commercial transportation either is not available or is not cost 

effective. On average, USAFE schedules approximately six "lines", or missions, per day 

with the C-21 fleet, with three or four "sorties", or flights each, and keeps one additional 

aircraft on alert for short-notice or priority tasking (for instance, in support of the Bosnian 

peace efforts). Additionally, USAFE projects that for most of the remainder of the year, 

they will have one of their nine C-21s unavailable, as those aircraft are sequenced through 

a maintenance/modification cycle. 



The C-20 is a larger executive jet, capable of carrying 12 passengers, which 

USAFE uses primarily to transport their most senior officers. The C-20 is reserved 

primarily for the theater's top generals for several reasons: 1. It has longer endurance, 

being able to fly up to eight hours unrefueled, making it an ideal candidate for flights 

from Ramstein Air Base, to Gander (Newfoundland), and on to Andrews AFB, Maryland. 

2. It has a better communications suite, and its crew includes a dedicated Radio Operator. 

Among the communications equipment are the very long-range HF and SATCOM radios 

essential for the support of the senior officers. 3. USAFE has only two C-20s. Due to 

their larger size, USAFE may on rare occasions use C-20's to carry larger groups, 

particularly when it is not cost-effective for them to travel by commercial conveyance. 

Their C-20s fly an average of a single mission per day. (Lopez-Velasquez, 1996) 

The final aircraft in the USAFE OS A inventory is the T-43, which is a converted 

B-737 that can carry 55 passengers. Due to its size and 5.5 hour endurance, it is primarily 

used for larger groups and longer ranges. The T-43 flies an average of only once per 

week. 

Scheduling 

USAFE schedules two primary types of OSA missions. One is "Out-and-Back" 

missions or day trips which depart their home base of Ramstein, fly to their destination, 

and then return to Ramstein on the same day. The other is a "Remain Overnight" (RON) 

flight where the airplane and crew spend the night at a destination away from home and 

then return home on a later date (typically the next day). USAFE generally prefers to 

schedule Out-and-Back missions, as those are easier for maintenance to support and less 



taxing on the crews. A RON will often be scheduled when the distance traveled makes 

"deadheading," or flying an empty aircraft back to Ramstein only to return to pick up the 

same passenger(s) later ineffective. RONs may also be used when the return time the 

next day is indefinite. On average, about 65% of the missions are Out-and-Backs; 35% 

are RONs. 

If USAFE gets a short-notice request for OS A, schedulers first look at their 

schedule to see if the request is supportable. If it is not, they then contact other US 

agencies which may be able to support the request, such as Army and Navy units, or the 

European Command (EUCOM). If none of these agencies can accommodate the request, 

the schedulers then consider getting approval to add another mission to the schedule. If 

approval is granted, they schedule the mission and the crew, and notify the 76   AS of the 

change. While it may seem an intimidating task, the schedulers report that the process of 

checking with the other organizations and then adding a new line takes approximately 30 

minutes. (Lopez-Velasquez, 1996) 

Whenever possible, the schedulers attempt to "aggregate" multiple airlift requests 

onto a single mission. Not only would eliminating the need for an additional aircraft to 

accomplish the same support allow more time for maintenance on the aircraft, but it 

would also reduce the number of crews required. Though USAFE does not currently 

have excess crews, it is expected that by the summer of 1996 there will be fewer crews 

available, highlighting the need to aggregate missions whenever possible. (Lopez- 

Velasquez, 1996) 



Surprisingly, optimizing their schedule in order to reduce the number of flight 

hours needed to provide a given level of support may not currently be a high priority for 

USAFE. In fact, Maj Maher pointed out that in FY95 they ended up "turning in" 

unneeded flight time: approximately 300 C-20 hours, 200 T-43 hours, and 1700 C-21 

hours. Part of the reason for the excess time remaining was the requirement to maintain 

an alert aircraft and crew in support of the Bosnian peace effort. (Maher, 1996) 

The job of scheduling OSA for USAFE involves assigning crews to aircraft, 

allocating missions to requests, and coordinating with maintenance for the aircraft 

availability. Arranging the diplomatic clearances for required border crossings is 

generally not as serious a problem as it once was, since virtually all European nations 

now allow overflight. Switzerland has granted blanket overflight to DV aircraft to 

support the humanitarian mission in the Balkans, and even Austria allows passage with 

enough advance notice. 

Scope 

We have introduced USAFE's OSA mission, and briefly discussed the problems 

associated with scheduling passenger airlift. We will see that as problem size increases, 

exact solutions to the scheduling problem become intractable. Consequently, we find we 

need to rely on heuristic, or approximate, methods to solve the problem. The issue then 

becomes one of deciding how to determine if a heuristic provides the solutions that we 

seek. 

Chapter II reviews the relevant literature on vehicle routing and takes a detailed 

look at the DAKOTA heuristic. It makes a concentrated examination of the concepts of 



Validation, Verification and Accreditation (VV&A), particularly as they apply to 

heuristics and algorithms. It then defines what measures of performance may prove 

useful in judging heuristics and algorithms in general, and details the statistical tests 

which can be used to make those comparisons. 

Chapter III provides a discussion of four of the predominant airlift scheduling 

models currently in use, and Chapter IV develops a methodology which one can use to 

evaluate a deterministic passenger airlift scheduling heuristic, using DAKOTA as a case 

study. Chapter V presents conclusions and recommendations for further research. 

Finally, the appendices itemize several problems encountered in installing and 

running the DAKOTA program, and offer suggestions for improvements to the program. 



II. Literature Review 

USAFE's Operational Support Airlift scheduling problem is closely related to the 

class of problems known as the Vehicle Routing Problem (VRP). An entire area of study 

has been dedicated to trying to find better, more efficient ways to apply solution 

techniques to this class of problems. Though they are not the exact scheduling problem 

faced by an OS A scheduler, a basic understanding of the problem will provide important 

insights into the problem. 

This chapter addresses the solution approaches many authors have designed for 

the Traveling Salesman Problem and other variants of the VRP. Its intent is to 

demonstrate the extreme difficulty of solving this type of problem to optimality. The 

consequence of the complexity of these problems is that many authors have developed 

heuristic methods of solving the problems, concentrating on trying to reach good 

solutions which use far less computational effort, instead of necessarily trying to find an 

optimal solution. The question then becomes not "What is the answer?", but instead "Is 

this a good enough answer?" and "What is meant by 'good'?" 

This chapter considers how to compare the heuristics which have been developed 

to solve the vehicle routing problems. It starts by introducing some of the variants of the 

VRP and some of the solution techniques which have been proposed for them. It then 

reviews the heuristic incorporated within the DAKOTA scheduling program. Next, it 

examines how one might seek to validate, verify and accredit a heuristic, by considering 



what the appropriate performance measures for a heuristic might be in the case of the 

USAFE OSA scheduling problem. Finally, it discusses what the applicable statistical 

tests for conducting the comparison might be. 

Traveling Salesman Problem 

The most basic, most widely studied case of the vehicle routing problem is the 

Traveling Salesman Problem (TSP). The TSP is defined by a set of nodes, the set of arcs 

connecting those nodes, and the costs associated with moving from node to node along 

the arcs. The TSP consists of a single vehicle, departing from its origin (or depot), 

visiting (or servicing) all of the nodes and/or arcs in the problem once and only once, and 

then returning to its origin. There is no restriction on the order any of the nodes are 

visited. The objective is to minimize the distance traveled or cost of traversing the arcs of 

the route. 

If the specific problem requirements are tractable, an exact solution to the TSP 

can be determined by integer programming (IP). Unfortunately, the Traveling Salesman 

Problem is classified as NP-hard, indicating that an exact solution algorithm which is 

polynomially bounded is unlikely. (Lawler, Lenstra, Rinnooy Kan, and Shmoys, 

1985:11) The repercussion of this classification is that as the network size increases, the 

storage requirements and solution times required grow exponentially. Lawler, et al., 

found that a threshold for the size of tractable problems using most solution techniques 

seems to be about 100 nodes, though a 318-node problem has been solved to optimality, 

and some think that 1000-node or larger problems might be solved exactly with modern 



techniques. (Lawler, et al., 1985:15) In order to overcome the complexity of solving the 

TSP, many heuristic solution approaches have been developed. 

Vehicle Routing Problem 

Another routing problem, and one more closely related to the Operational Support 

Airlift scheduling problem, is the Vehicle Routing Problem (VRP). The VRP consists of 

several elements: (Swenson, 1986:13; Russell 1995:156) 

• A set of geographically distributed customers who require a pickup or 

delivery exactly once. 

• At least two vehicles (the one-vehicle VRP is the special case of the 

Traveling Salesman Problem) which originate and terminate at a central 

depot. 

• The operation of the vehicle incurs some cost. 

• In the Capacitated VRP, each vehicle has a finite capacity, and each 

customer places some known demand on the vehicle, which may vary 

from vehicle to vehicle. 

• In the VRP with Time Windows, the customers must be serviced during 

some permitted pickup or delivery time intervals. 

The VRP is an extension of the Traveling Salesman Problem which allows for 

more than one vehicle, which does not restrict the number of visits to each node, which 

can limit the capacity of each vehicle, and which places constraints on time. The optimal 

10 



solution of the VRP minimizes the cost of satisfying all the customers' requirements 

without exceeding any of the vehicle capacity constraints. 

In the classical VRP, a constraint may be added to restrict vehicles to only one 

visit per node, but such a restriction is unlikely to apply to OSA's airlift scheduling 

problem. It will therefore not be included in our discussion of the VRP. 

Solution Approaches 

Swenson (1989) offered two general methods of approaching the solution of the 

VRP: 

1. Exact Methods. Swenson reviewed an exact solution technique using branch 

and bound methods with Gomery cuts, which is applicable on problems with up to 60 

stops. She also examined a method using Lagrangian relaxation in a branch and bound 

algorithm to solve a restricted VRP which can solve problems with up to 151 stops, 

minimizing the number of vehicles required. 

2. Heuristics. For most problems larger than those, however, exact solution 

methods have not been found. One wishing to solve a more complicated problem will 

have to rely on using a heuristic method instead. Swenson suggests most of the heuristics 

for the VRP fall into five categories: 

a. Tour building heuristics. Stops are added one by one to the routing until all 

stops have been covered. 

b. Tour improvement heuristics. Starting with an initial set of feasible routes, 

the route is improved by removing and replacing arcs. 

11 



c. Two-phase method. The routes are built and extended in two phases 

iteratively, building the tour by adding arcs and then resolving the problem. 

d. Cluster-first, route-second method. Stops are grouped into sets (clusters) to 

be served by a single vehicle, and then the routing within each cluster is 

determined by traveling salesman heuristics. The groups are determined by 

associating all stops within a certain radius of some "seed"; much research has 

been spent on deciding the optimal placement of the seeds and the group size. 

e. Interactive routing. A human interacts in the partially-automated process, 

primarily to ensure that constraints which have not been modeled are satisfied. 

Vehicle Routing Problem with Time Windows 

A variant of the VRP is one in which the pickups and deliveries must occur during 

certain time windows. Swenson looked at the Vehicle Routing Problem with Time 

Windows (VRPTW), and concluded that the best solution method was an iterative 

approach. She feels that these solution methods fall into three classes: (Swenson, 

1986:18) 

1. Limit the problem. Some solution methods overlook the time constraints, 

allowing an exact solution to a limited problem. 

2. Cluster first, ignoring the time constraints, then route within the clusters 

according to the time constraints. 

3. Route building heuristics with the time constraints limiting the route segments 

which can be added to the route. 

12 



Her work concentrated on the second method: clustering first and routing second. 

Geographically proximal stops are grouped into clusters without considering the time 

constraints. The routing step heeds the time constraints, but is not bound by them. A 

feedback procedure then evaluates the routes according to both route length and the time 

constraints. If needed, the clusters are revised to account for the time constraints. The 

iterations are repeated until the stopping criterion (satisfactory routing or maximum 

number of iterations) is reached. 

Swenson was concerned that most of the success of the method depended on the 

initial choice of the "seeds" used in determining the grouping of stops into the clusters. 

Additionally, she stressed concern for the added complexity caused by using the feedback 

loop to revise the clusters when the time constraints are not met. The VRP is complex 

enough, and while putting it inside a feedback loop may sound drastic, she could see no 

way to avoid considering the time constraints inside the initial clustering. 

One of the more promising developments for solving the VRPTW was detailed by 

Russell. He points out that in most real-world problems, there exists more than one 

objective. He rank orders the most common as: (Russell, 1995:156) 

1. Minimize the number of vehicles (routes) 

2. Minimize the schedule time 

3. Minimize the travel distance 

Most of the early work on VRPTW included both exact and heuristic methods. 

Exact methods attempted included branch-and-bounding, column generation, and k-tree 

relaxation approaches, which Russell states have been able to solve to optimality 

13 



problems with up to 100 customers who wish to travel among 25-50 nodes. However, 

Russell argues that efficient heuristic methods must be used for most of the real-world 

problems. (Russell, 1995:157) For example, Solomon (1987) proposed a VRPTW 

heuristic which had a primary objective of reducing fleet size required. 

Russell's contribution was an examination of a parallel insertion heuristic and the 

choice of seed points, the order of insertion of the points, and the post-processing of any 

unrouted customers. He then examined a local search interchange heuristic which can 

improve upon the initial feasible solution to the VRPTW while limiting its search to 

within a neighborhood. He found that if the neighborhood is restricted to be too small, 

then the search fails to result in any improvement to the solution; if the neighborhood is 

too large, the problem becomes intractable—the classic neighborhood search dilemma. 

Russell's proposal was a hybrid approach: Instead of applying the interchange heuristic 

to find an improvement to an existing feasible solution, he embedded it within the 

construction phase of the initial feasible solution. He applied his hybrid heuristic to a 

large variety of test problems from the literature (Russell, 1995:161-165), and compared 

his results with those from parallel seed point, interchange, and k-opt two-phase and 

hybrid methods. While his heuristic was not the fastest he examined, he reports it 

generally yielded the best solutions to the VRPTW, and dominated the other approaches 

in terms of the number of vehicles (routes) in the solution with a 6.8 percent average 

reduction. 

A heuristic for the VRP with Soft Time Windows was developed by Koskosidis, 

Powell and Solomon (1992). They express it as a mixed integer program, and use a 

14 



heuristic to extend the cluster-first, route-second algorithm for its solution. Koskosidis, et 

al., formulated a method of treating the time windows as "soft constraints" which are 

penalized a cost in the objective function when violated, hence the name soft time 

windows. Customers with tight delivery time requirements receive a high weight in the 

penalty function. The heuristic solves the problem in two phases: clustering the 

assignments, and then routing and scheduling among the clusters. They claim one of the 

advantages of this approach is that, since soft window constraints are more flexible, the 

heuristic is less likely to be caught in local optima. Koskosidis, et al., report their 

heuristic performed favorably compared to contemporary local insertion and 

improvement heuristics, and that it is capable of finding solutions in cases when a hard 

time window formulation would have failed. 

General Pickup and Delivery Problem (GPDP^ 

In this general problem, vehicles have to transport loads from origins to 

destinations without transshipment at intermediate locations. Savelsbergh and Sol (1995) 

describe three special cases of the GPDP: 

1. The Pickup and Delivery Problem (PDP), where each request has a single 

origin and a single destination, and all vehicles originate from and return 

to a central depot. 

2. The Dial-A-Ride Problem (DARP), where all loads are generally of unit 

size. 

3. The VRP, where either all the origins or all the destinations are at the 

depot. 

15 



They attempt to generalize these three cases to deal with many of the practical 

pickup and delivery situations by considering that the transportation requests often are 

received while the vehicles are "on the road," so the concept of depots is moot. They 

examine several different goals represented in the objective functions: 

1. Minimize duration of the time a vehicle needs to execute the route. 

2. Minimize completion time of the latest service activity. 

3. Minimize time spent traveling between locations. 

4. Minimize route length. 

5. Minimize client inconvenience, or how nearly the requested pickup and 

delivery times are met. 

6. Minimize the number of vehicles, which is nearly always the objective in 

the DARP. 

7. Maximize profit, where the dispatcher does not have to fulfill all 

transportation requests, but can reject those deemed unprofitable. 

Savelsbergh and Sol discuss solution approaches, dividing them into static and 

dynamic classes, and single- and multiple-vehicle problems. They point out that in a 

VRP most transportation requests which are geographically proximal are served by the 

same vehicle, since the vehicle generally originates at a single location (the origin). In 

the PDP, however, even geographically close destinations may be served by different 

vehicles, since those vehicles may come from different origins. They then discuss exact 

and approximate solution methods for each type of problem. 

16 



Dial-a-Ride Problem 

The Dial-a-Ride Problem concerns scheduling a vehicle to transport a customer 

from a specified pickup location to a specified delivery location. This is similar to the 

OS A scheduling problem, with the added constraint of only one passenger per travel 

request. Several variations on the DARP include a many-to-many problem, involving 

multiple customers and pickups from and deliveries to a location unique for each of those 

customers; advance request systems, which permit the requests to be processed and 

scheduled in advance in batches; and immediate request systems, which require the 

requests to be scheduled by an insertion method. 

Solutions to the DARP have been an area of significant research. Psaraftis 

considered an exact dynamic programming solution for the single vehicle problem. His 

algorithm requires an exponential increase in solution time and storage for an increase in 

problem size, and has only been solved for relatively small problems of up to 10 nodes. 

He noted the necessity of using heuristics for the solution of real problems. (Psaraftis, 

1983:356) 

Further refinements to the problem include Psaraftis' k-interchange algorithm, 

where k tour links of a tour are exchanged for k other links, which Jaw (1986) found 

useful as a subroutine in his multi-vehicle advance-request algorithm with time windows. 

Jaw followed up on Psaraftis' work by developing a heuristic solution to the multi- 

vehicle with time windows problem, with an insertion technique which accounted for 

pickup and delivery time windows. Jaw's method was to order the requests prior to 

scheduling according to their requested pickup time. 

17 



One of the disadvantages to these methods is that they take a myopic outlook; by 

assigning requests sequentially, the "greedy" method may overlook a more preferable 

global solution. Walker (1994) described an alternative solution technique to attempt to 

compensate for that potential shortcoming. That algorithm included an objective function 

which penalized minor violations of the constraints without ruling them out completely, 

in an attempt to permit potential solutions which may be "slightly infeasible" but may 

otherwise be acceptable. 

Solanki and Southworth (1991) suggested a heuristic specific to an airlift 

problem, which accounted for the capacities of the airfields, and the rate at which they 

could service the arriving and departing flights. Their paper described their work on the 

Airlift Deployment Analysis System (ADANS) project. Their work was funded by the 

then-Military Airlift Command (MAC) to develop a means of updating the routes and 

schedules of aircraft transporting passengers and cargo when requirements change. 

They use an insertion heuristic, starting with an existing schedule and adding new 

missions one at a time, solving more difficult problems iteratively. The object of their 

algorithm is to minimize a weighted sum of the tardy deliveries (i.e., those delivered after 

their Latest Arrival Dates). The weights given to particular deliveries enable the 

scheduler to prioritize missions. High priority cargo or passengers are granted a higher 

weight, forcing the algorithm to consider satisfying those requests over others. Similarly, 

placing a higher weight on outsized cargo forces the model to assign those missions to the 

large C-5 or C-17 aircraft which can handle the outsized loads. 
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According to the authors, the requirement stated by MAC was for the heuristic to 

solve a large problem consisting of some 500 to 700 aircraft, up to 200 airfields, and one 

week duration, in one hour or less of CPU time on a dedicated mainframe computer. 

They stress that they had only tested their method on problems of 42 aircraft and 10 

airfields, but that they had considerable success since each used less than two minutes of 

processing on a SUN-4. 

Solanki and Southworth assert that for larger problems, "The expected growth in 

computational effort with increasing problem size should be linear" for several reasons: 

(Solanki and Southworth, 1991:128-129) 

1. Each insertion adds only (up to) two new airfields visited for an 

aircraft (the new origin and destination). 

2. The computational effort to perform one insertion will be proportional 

to the small number of aircraft picked to be candidates in Step 1. 

3. The number of insertions (and missions) will be roughly proportional 

to number of aircraft. 

Therefore, the computational effort will be the product of the effort per insertion 

and the number of insertions—a linear function of the number of missions added. 

An alternate approach to a more specific transportation problem was proposed by 

Psaraftis (1983). His algorithm allows for only one vehicle making deliveries from N 

distinct origins to N distinct other destinations. Psaraftis admits that such problems rarely 

exist in nature, but rationalizes that an efficient algorithm for a single vehicle problem 

can ably serve as a subroutine for a multivehicle problem, as in Solanki and Southworth. 
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In fact, that is the essence of the second step of the Solanki/Southworth algorithm, where 

the candidate aircraft (i.e., single vehicle) is chosen to serve the extra "inserted" mission, 

as well as its previous ones. 

The difference is in the approach the two methods use. Psaraftis' algorithm 

"reshuffles" the origins and destinations, and reconsiders the entire problem from scratch. 

Thus, its required computational effort will be 0(N23N), and its storage requirement is 

0(N3N) (Psaraftis 1983:356). This algorithm is considerably more complex for larger 

problems than was the algorithm suggested by Solanki and Southworth. In fact, Psaraftis 

himself posited that "computational burden associated with an exact approach cannot be 

overly de-emphasized, and this has prompted many research groups to use heuristic 

routing algorithms instead of exact." (Psaraftis 1983:356) 

One concern is that inserting missions one at a time will yield a "best place to fit 

the new mission in our existing schedule" schedule, but not necessarily a "best possible" 

(i.e., optimal) schedule. It can be concluded, as Psaraftis notes, that for even reasonably 

large real-world problems, the heuristic proposed by Solanki and Southworth will at least 

be tractable. 

The approach described by Solanki and Southworth, that of minimizing a 

weighted sum of the tardy deliveries, is defined by Walker(1994:125-128) as "Minimum 

Fly Time Value Ordering." He provides an alternative, "Minimum (Soft) Time Violation 

Value Ordering," in which the goal is to minimize the number of soft time violations (i.e., 

the number of tardy jobs). Unfortunately, Walker explains that this approach requires a 
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linear programming problem be solved for each possible insertion; this will only be 

practical for problems of limited scope. 

We have examined several variants of the Vehicle Routing Problem. In the VRP 

with Time Windows, we found that the time constraints require heuristics which either 

take advantage of the multiple objectives usually pursued (minimize the number of 

vehicles, the schedule time, or travel distance), or that solve the problem in two phases 

(cluster-first, route-second). Some treated time windows as "soft constraints", but 

penalized violations. We investigated General Pickup and Delivery Problems, which 

considered multiple different objective functions. Finally, we looked at Dial-a-Ride 

Problems and several heuristic solution methods proposed. In all cases, we found that 

exact methods were unable to cope with the computational effort required when problems 

grew larger, and most of the authors concentrated on heuristic solution methods. We are 

not guaranteed that these heuristics will produce optimal solutions to the problems posed, 

but they enable us to attempt larger, more complex problems and still hope for 

reasonable solutions. Certainly an optimal solution is our goal, and we are willing to 

accept a solution which is less than optimal only when necessary. Goldberg, whose 

recent work has centered on genetic algorithms (a heuristic approach), asserts that the 

operational goal of optimizing approaches, particularly for larger problems, is 

improvement, not necessarily optimality: 

The most important goal of optimization is improvement. Can we get to 
some good, 'satisficing' level of performance quickly? Attainment of the 
optimum is much less important for complex systems. It would be nice to 
be perfect: meanwhile, we can only strive to improve. (Goldberg, 1988:7) 
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We have looked at employing heuristics to solve several variations of the vehicle 

routing problems. Now we turn to look at one heuristic which was developed specifically 

for the USAFE OSA scheduling problem. 

DAKOTA'S Heuristic: Airlift Resource Allocation and Scheduling Problem fARASP^ 

Walker looked at the application of heuristics to scheduling OSA airlift, and 

developed and documented the primary heuristic implemented in the DAKOTA 

scheduling system. In his development he introduces the Airlift Resource Allocation and 

Scheduling Problem (ARASP) classification, and describes the characteristics of the 

problem: 

• Travel Request Characteristics 

• Origin 

• Earliest/Latest Pickup Times (Hard or Soft Times) 

• Destination 

• Earliest/Latest Delivery Times (Hard or Soft Times) 

• Priority 

• Contingent Size 

• Resource Characteristics 

• Fleet Size/Type 

• Capacity 

• Speed 

• Endurance 
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• Operational Constraints 

• Length of time an aircraft may remain in service 

• Required maintenance schedule 

• Flight crew duty restrictions 

•    Performance Measures 

• Support as many requests as possible 

• Honor hard times 

• Penalize soft time violations 

• Minimize subsequent scheduling changes 

The main core of the ARASP scheduling system is the SchedGen algorithm 

developed by Walker (1994). The SchedGen algorithm incrementally schedules travel 

requests onto aircraft missions defined by the scheduler. It represents feasible 

assignments of request legs to aircraft missions as columns for a set packing (SP) 

problem. It uses three primary sub-algorithms in accomplishing its objective; the first 

(ColGen) controls the order of SP column creation, the second (ActFits) determines 

where schedule insertions can be made to maintain feasibility, and the third (Einserf) 

decides how insertions should be made. Walker describes each of these functions in 

detail. (Walker, 1994). 

For the discussions which follow, the definitions below will be used: 

Mission: A specific aircraft and crew (and associated support) designated for a 

time period as available to provide support for airlift requests. 
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Request: An application for a (group of) passenger(s) to receive airlift support. A 

request can have multiple "legs", indicating the contingent of passengers wishes to travel 

to more than one destination. 

Hard Time: A strict bound on a time window for a request (e.g., a traveler needs 

to reach a destination by a certain time). 

Soft Time: A bound on a time window for a request which can be violated if 

necessary (e.g., a traveler does not wish to leave before a certain time, but would be 

willing to leave earlier if necessary). 

Associated with each mission is a schedule, composed of an ordered list of events: 

R={rl5...,rn} (1) 

where n is the number of request legs scheduled. When determining which requests to 

assign to missions, the requests can be ordered according to several decision rules (e.g., 

most constrained first, earliest pickup time first, or random), or ordered manually by the 

scheduler. Walker points out that "the performance of any insertion algorithm is 

inherently affected by the order in which the insertions are attempted and by the value 

associated with a particular insertion." (Walker, 1994:43) Insertion attempts for the 

requests follow the order presented in the sequence. 

The table below gives a sample of a request with two legs, in which three 

passengers request round-trip travel between Ramstein Air Base, Germany (EDAR) and 

Laarbruch (EDUL): 
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Table 1 

Sample Requests 

Origin Pickup Time 
Date      Early     Late 

Destination Delivery Time 
Date    Early     Late 

#Pax 

EDAR 
EDUL 

2/1/95    (0645    0745] 
2/1/95    (1100    1200] 

EDUL 
EDAR 

2/1/95   (0800   0830] 
2/1/95   (1215    1245] 

3 
3 

Open parentheses, as in "(0645" indicate soft time bounds, and square brackets, as in 

"0745]" indicate hard time bounds. So "(0645   0745]" indicates the travelers wish to 

depart no earlier than 0645, but must arrive by 0745. 

An example of a mission which might be able to accommodate the requests from 

Table 1 is: 

Table 2 

Sample Mission 

Home Early Time Late Time Aircraft 
Base Date   Time Date     Time Type Airspeed Endurance Capacity 
EDAR 2/1/95 0600 2/1/95    2000 C-21      440        4.0 hrs.           7 

In the SchedGen algorithm, the flight time is computed using the great circle 

distance and the aircraft's airspeed. Legs which violate the endurance constraint require 

insertion of an additional fuel stop. At each intermediate stop, a ground service time of 

75 minutes is assumed for landing, unboarding, refueling, boarding and taking off—the 

same layover time USAFE uses for their planning. Times for each event must consider 

both its earliest permissible time and the completion time of all preceding events which 

must be completed prior to the event under consideration. Event times and time window 
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constraints are propagated forward and backward using Critical Path Method techniques. 

Thus, "the earliest time for an event is the latest of the earliest time the event can take 

place and the earliest time which will satisfy the constraints of all request legs associated 

with the event," and "the latest time for an event is the earliest of the latest possible times 

for the event and the latest time which will satisfy the constraints of all associated 

requests legs." (Walker, 1994:41) 

Description 

The algorithm Walker described is as follows: (Walker, 1994:44) 

Scheduling Process for ARASP 

• Select candidate missions to schedule onto 

• Check out missions from scheduling database 

• Form set M 

• Select request legs for scheduling 

• Check out legs from scheduling database 

• Form set R. 

• Order request legs in set R according to selected variable ordering strategy 

• For each mission Mj, i = 1,... ,m do 

• For each request leg x}, j = 1,...,n do 

•    Generate SP columns for representing feasible insertions of 

request legs from the subset {rj,.. .,rn} 
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• Use SP solver to heuristically determine columns representing the "best" 

assignment of request legs to missions 

• Use insertion algorithm tools to recreate schedules for selected assignments 

• Postprocess event list to obtain specific arrival and departure times 

• Review / Alter schedules 

• Check in missions and request legs and request database update 

The objective may be minimizing cost or minimizing soft time window violations 

while maximizing the number of request legs supported. 

After the heuristic proposes a solution, the human scheduler can accept or reject 

the solution, or can then schedule additional request legs onto the proposed solution or 

make other alterations. Once the schedule is finalized, the solution is saved to the 

database for implementation. 

While the insertions may be determined by a greedy algorithm (such as Act Fits), 

one that makes assignments without regard for future insertions, a better algorithm would 

be one which attempts to create a schedule which is most flexible for subsequent 

insertions. (Walker, 1994:48-49) One measure of flexibility is the size of the time 

windows for required events. Compressing the mission by delaying its origination until 

the latest permissible time and terminating as early as possible may produce a "tight" 

schedule, but one which is "brittle", vulnerable to errors or even small changes in the 

schedule. 
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Another factor which must be considered by the heuristic is constraint 

propagation. Constraints may include limits on the number of flight hours on each 

particular aircraft or aircraft taken out of service for routine maintenance or training 

missions. (Walker, 1994:52) Expanding or contracting the time windows for events 

cause changes which must be propagated; requests serviced by a mission leg influence 

other legs, the mission, and the affected aircraft; onload or offload of passengers alters the 

remaining capacity of the aircraft. In light of the latter concern, SchedGen provides for 

"turning off' capacity checking, allowing the scheduler to observe performance, and to 

then negotiate with the requester to support fewer passengers, when appropriate. 

Computational Effort 

The SchedGen heuristic must generate columns for feasible schedules for each 

mission under consideration. A concern would be for the additional computational effort 

required with growth in the problem size, but Walker asserts that "we can expect to 

experience linear growth in computer CPU time to perform the generation." (Walker, 

1994:69) This is comparable to the conclusion drawn by Solanki and Southworth in their 

work on the ADANS project, where they determined that "the expected growth in 

computational effort with increasing problem size should be linear." (Solanki and 

Southworth, 1991:128-129) 

Walker then discusses the computational effort involved in the growth of the 

event list when insertions are considered. He justifies a worst case order of 0(n ) for the 

scenario with n request legs. (Walker, 1994:78) There are several rules of thumb 

incorporated into the algorithm to reduce the size of the event list further. For instance, 
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no travelers are expected to travel through the same stop twice enroute to their 

destination. Also, if an event's latest time is earlier than a pickup's earliest time, or if an 

event's earliest time is later than a delivery's latest time, the search through the event list 

can be curtailed. Nevertheless, Walker concludes that, out of concern for the growth of 

computation times, it is in the interest of the human scheduler to limit the lengths of the 

missions and to provide reasonable constraints on the requests to allow the algorithm to 

complete the task in a reasonable time. (Walker, 1994:79) 

Variable Ordering 

Variable ordering concerns focusing efforts on the most critical decision points in 

solving the problem. Generally, insertion techniques suffer from the "myopia" inherent 

in committing to an insertion without fully considering the consequences. SchedGen 

attempts to compensate for the shortsightedness by establishing an ordering strategy for 

the insertion attempts. The ordering strategies considered are: 

• Most Constrained First (MCF): Consider first those request legs which have 

the least likelihood of being scheduled 

• Time Bound Variable Ordering: Sorting the request legs according to 

early/late pickup times (EPF/LPF), or early/late delivery times (EDF/LDF) 

Walker's testing indicated that Earliest Pickup First (EPF) ordering consistently 

succeeded in improving schedule quality and reducing the necessary search. (Walker, 

1994:81) 
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Value Ordering 

Finally, once candidate schedules are produced, they must be ranked in order of 

how "good" they are. Walker described three different strategies: Minimum Fly Time 

(maximize the number of request legs supported while minimizing the marginal cost of 

the added support), Minimum Soft Time Violation (depending on the priority of the 

request leg), and Least Constrained Schedule (a robust schedule which can absorb minor 

changes while remaining feasible). 

Interim Summary 

In summary, we have seen that the transportation problem posed by the OSA 

mission is highly complex; solving routing problems becomes computationally difficult 

as the problem size increases. Several authors pointed out that "the mathematical 

programming problems arising from scheduling applications are often difficult to solve, 

and workable schedules must often be obtained from heuristics." (Sklar, et al., 1990:76; 

Bodin and Golden, 1981:97-108) For the traveling salesman problem, we saw that a 

threshold for the size of tractable problems using most solution techniques seems to be 

about 100 nodes. (Lawler, et al., 1985:15) Consequently, many authors have proposed 

heuristic solution techniques in an attempt to be able to find "good" solutions to the 

problem. Reeves defined a heuristic as "a technique which seeks good (i.e., nearly 

optimal) solutions at a reasonable computational cost without being able to guarantee 

either feasibility or optimality, or even in many cases to state how close to optimality a 

particular feasible solution is." (Reeves, 1993:6) This leaves those who wish to use the 

heuristics with several issues to ponder: 
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1. When should use of a heuristic be considered, and when should finding the 

optimal solution be attempted. 

2. If it is decided to use a heuristic, how does one determine which heuristic to 

use. 

3. Once a solution is obtained, how to measure if it is a "good" solution. 

4. What is meant by "good" solution. 

This thesis next examines the concepts of validation, verification, and 

accreditation. The terms are introduced in the context most commonly found in the 

literature: modeling and simulation. We then consider how to apply these concepts to 

the task of evaluating heuristics and algorithms, proposing how one would validate, 

verify or accredit a heuristic or an algorithm. The characteristics which may be of 

interest, and means of statistically comparing the measures of interest are reviewed. 

Validation. Verification and Accreditation (VV&A) 

This section introduces the concepts of validation, verification, and accreditation 

as they are discussed in the literature. We consider particularly the notion of VV&A as it 

is applied to heuristics and algorithms. 

Gass (1992) suggests that the purpose of validation is to convince the modeler 

"who should not need much convincing" and others "who should require a great deal of 

convincing" that the model would be of use to a decision maker. (Gass, 1992:250) His 

concept of the purpose of validation is to provide the decision maker some degree of 

"confidence" in the model. Since the confidence is from the point of view of the decision 

maker, not the modeler, the confidence is an attribute not of the model, but of the model 

31 



user. "We take an extreme position by saying that a decision model without a designated 

user (which implies a specific use) has no basis upon which a confidence statement can 

be made, that is, the a priori confidence level is zero." (Gass, 1992:250) 

This leads into the concept of accreditation. Gass gives the definition of 

accreditation as "an official determination that a model is acceptable for a specific 

purpose." (Gass, 1992:251) The key to the definition is the "specific purpose" clause. 

Just as a model must be designed only for specific purposes, it must be graded or judged 

according to how well it achieves a specific purpose. If it fails to meet the standards 

fully, then Gass suggests that "the item in question can receive limited and restricted 

accreditation." (Gass, 1992:251) This again suggests the notion of accrediting the model 

with respect to its explicit specifications. Gass submits that the review needs to be done 

by an independent third party, with a specific user in mind, and should produce a report 

that gives guidance on whether or not the model can be confidently used for the intended 

purpose. By stating the criteria for the accreditation, the user implies some sort of 

weighting on those criteria in determining how well the model meets the overall 

objective. 

Gass gives the following definitions: (Gass, 1992:253) 

1.   Verification is the process of determining that a model implementation 

accurately represents the developer's conceptual description and 

specifications. 
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2. Validation is the process of determining the degree to which a model is 

an accurate representation of the real world from the perspective of the 

intended uses of the model. 

He suggests that the independent review should judge the model according to 

several criteria: (Gass, 1992:254) 

• Specifications: Were the specifications adhered to? 

• Verification: Is the model reliable and an acceptable representation of what 

was supposed to be done? 

• Mathematical Logic 

• Computer Code 

• Validation: Is the model a suitable representation of the decision situation? 

• Theoretical Validity 

• Input Data Validity 

• Operational Validity 

• Face Validity 

• Pedigree: How capable is the model of solving the current problem based on 

its previous incarnations, past uses and the reputations of its developers? 

• Past Uses 

• Developer 

• Configuration Management: Was the model development process managed 

properly? 
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• Usability: Can this model be used to solve the problem with the given 

resources? 

• Documentation: Is the documentation sufficient to use the model? 

Miser stresses that "a theory or model is an intellectual construct designed to 

approximate a selected aspect of reality." In that light, he offers the following 

definitions: (Miser, 1993:212) 

1. Validation is the process by which scientists assure themselves and 

others that a theory or model is a description of the selected 

phenomena that is adequate for the uses to which it will be put. 

2. Verification is the process by which scientists assure themselves and 

others that the actual theory or model that has been constructed is 

indeed the one they intended to build. 

Miser contemplated the criteria to use in validation, and concluded two 

inferences: (Miser, 1993:213) 

• There are no universal criteria for validation. Rather, the basis for 

judging the confidence that one should have in a model rests on the 

situation being modeled and the work that has been done, both in 

formulating the model and in comparing its consequences with reality. 

• Any validity judgment is relative in at least two ways: with respect to 

the phenomena being modeled and the uses to which the model will be 

put. Thus a model may be used with adequate confidence in one 

situation but not in another. 
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Dery, Landry and Banville took an epistemological approach to the issue 

of model validation, phrasing it in the terms of the scientific method. Ultimately, 

they concluded that there can be no consensus found regarding the rules or 

process of validation: "There is no agreement either on what is a valid model or 

on what is the way to validate models." (Dery, Landry and Banville, 1993:168- 

169) 

Landry and Oral concurred with this view when they wrote ".. .there is not 

one universal scientific method and therefore there cannot be a universal set of 

criteria for model validation."   (Landry and Oral, 1993:162-164) They classified 

four types of validity: 

• Formulational Validity: the degree of relevance of the assumptions 

and theories underlying the formal model of the managerial situation 

for the intended beneficiaries 

• Experimental Validity: the quality of the solutions, the types of the 

solutions, the nature of solution techniques and the efficiency of the 

solution procedures 

• Operational Validity: focus on the usefulness, timeliness, synergism, 

and cost of implementing the solutions provided by the model 

• Data Validity: sufficiency, accuracy, appropriateness, availability, 

maintainability, reliability, and cost of data 
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They equated model accreditation with credibility, explaining that "In this 

context, an accredited model becomes a legitimate model for use; in other words, it is 

licensed to be used for the intended purpose." (Landry and Oral, 1993:166) 

Oreskes, Shrader-Frechette and Belitz took a different approach in their 

discussion of verification, validation and confirmation of numerical models. Their 

definitions are reversed from those of most other authors. They defined verification as 

the demonstration of the truth of a model, implying its reliability as a basis for decision- 

making. Validation, to them, means not that the model is an accurate representation of 

physical reality, but rather a model that does not contain known or detectable flaws and is 

internally consistent. (Oreskes, Shrader-Frechette and Belitz, 1993:641-642) 

Next, they considered the concept of "confirming" the model. Their assertion is 

that the best one can do in testing a model is to confirm that it produces the desired 

output. A model's failure to reproduce the expected outcome implies a fault in the 

model, but the reverse cannot be true; more confirming observations do not demonstrate 

the veracity of a model, they only support the probability that the model has no fault. 

(Oreskes, et al., 1993:643) 

They judge that most of what passes for verification and validation is at best 

confirmation. Their concern about confirmation is that it is always a matter of degrees of 

probability, and that it encourages the modeler to claim positive results. Thus, they 

conclude that "models are most useful when they are used to challenge existing 

formulations, rather than to validate or verify them." (Oreskes, et al., 1993:643-644) 
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Rykiel (1994) criticized the Oreskes article, stressing that "validation" is 

equivalent to "acceptance testing", and with possible rare exceptions, validation and 

verification cannot be used to prove that the content of a model is "true." He makes four 

points: 

1. Modelers should define validation and verification for the (technical) context 

in which they intended to use those terms. 

2. Failure to do so will create a false sense of truth, instead of creating 

consensus. 

3. Modelers should specify the context of the model. 

4. They should "use model acceptability and performance indices" in describing 

testing results, instead of "declarations of validation." 

Bacsi and Zemankovics (1995) suggest several statistical methods that can be 

used for assessing goodness of fit between model and field observations. They note that, 

especially for small sample sizes, results of the various tests can often be contradictory, 

and deciding whether a model performs well or badly is often subjective, with the 

statistical or mathematical analysis useful to support the subjective assessment. (Bacsi 

and Zemankovics, 1995:263) 

Law and Kelton developed a three-step approach to developing valid and credible 

simulation models, which they feel "will not guarantee an absolutely valid model, but it 

will make the model more representative of the real system and also more credible." 

(Law and Kelton, 1991:307-314) 
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1. Develop a Model with High Face Validity. Develop a model which seems 

reasonable to those who are knowledgeable about the system. 

a) Conduct conversations with systems experts. 

b) If a similar model already exists, collect data and make observations ofthat 

system. 

c) Use relevant results from similar simulation models. 

d) Use results from existing theory which may govern the process. 

e) Use experience and intuition, especially in complex systems where some 

assumptions may need to be made. 

2. Test the Assumptions of the Model Empirically. Test the probability distributions 

used in the model, and conduct sensitivity analysis on the output. 

3. Determine How Representative the Simulation Output Data Are. Law and Kelton 

write that this is the most definitive test of a simulation model's validity. The data 

should be compared either to real-world output data, or to the data of other existing 

simulations. 

Finally, Elmer examined several methods of validation, verification, and 

accreditation as they relate to Department of Defense regulations and instructions on the 

subject. He synthesized the work of Law and Kelton and several other authors (Balci, 

Sargent, and Davis) into a procedure, which he called the Proposed Integrated 

Methodology (PIM) model, described below: (Elmer, 1995:27) 
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1. Apply the definitions and concepts to communicate the important issues of 

VV&A to the customers 

2. Determine tradeoff of cost vs. value of the confidence gained 

3. Document all work in validation effort 

4. Examine validity of data 

5. Develop the model with high face validity throughout the entire building 

process, with system experts, experience and intuition, and Peer Reviews 

6. Experimental design validation 

7. Test or verify the assumptions made in the conceptual modeling 

8. Test the model's output with empirical techniques, especially if historical data 

exist 

9. Explain the process to the customer 

His PIM combined the better points of works he investigated, combining them into a 

nine-step "checklist" for the user to follow. 

In summary, most authors collectively agree that the purpose of VV&A is to 

verify that a model is appropriate and acceptable for a specific purpose. The implication 

is that VV&A is not an absolute guarantee of the model's suitability, but an expression of 

the decision maker's confidence that the model is apropos for the intended purpose: Does 

it meet specifications, is it an acceptable representation of what was intended, and is it a 

suitable portrayal of the decision situation. Next, we'll consider the concept of VV&A 

and extend it to the evaluation of heuristics and algorithms. 
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Evaluating Heuristics and Algorithms 

Some authors have applied the concepts of validation and verification to testing 

heuristics and algorithms. One example is a report by Barr, Golden, Kelly, Resende, and 

Stewart (1995), which discusses the design of computational experiments and reporting 

guidelines for heuristic methods. For the purposes of their examination of validation and 

verification of heuristics and algorithms, they use the terms "heuristic" and "algorithm" 

interchangeably. 

They define a heuristic method as a "well-defined set of steps for quickly 

identifying a high-quality solution for a given problem." (Barr, et al., 1995:3) Several 

concepts implicit in this definition are critical. First, the concept of quality, which has to 

be measured by the pre-defined evaluation metrics or criteria for the problem. Second, 

the solution is assumed to be feasible, meeting all problem constraints. Third, the speed 

of solution; heuristics will characteristically be applied in those situations where a timely, 

good solution is deemed more critical than an exact solution. Identifying these concepts 

is key to designing and reporting on a heuristic method. 

Barr, et al., point out that, although no set standards exist for publishable 

algorithmic research, a heuristic method makes a contribution if it is: (Barr, et al., 

1995:6) 

• Fast—produces high-quality solutions more quickly than other 

approaches 

• Accurate—identifies higher-quality solutions than other approaches 
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• Robust—less sensitive to differences in problem characteristics, data 

quality, and tuning parameters than other approaches 

• Simple—easy to implement 

• High-impact—solves a new or important problem faster and more 

accurately than other approaches 

• Generalizeable—has application to a broad range of problems 

• Innovative—new and creative in its own right 

Additionally, a report about the heuristic's performance is valuable if it is: 

• Revealing—offer insight into general heuristic design or the problem 

structure 

• Theoretical—provide theoretical insights, such as bounds on solution 

quality 

Ignizio (1971) made a call for establishing standards for comparing the 

performance of algorithms. Specifically, he wanted pertinent societies (ORSA, TIMS, 

SI AM, AIEE) to ordain standards with which an author must comply before publishing 

an algorithm in any of the journals. He listed the essential factors which he thought 

would apply to algorithms submitted for publication: (Ignizio, 1971:9-10) 

1. Dates of study 

2. Dates of computation 

3. Computer used 

4. Programming language used 

5. Amount of internal storage used 
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6. Amount and type of external storage used 

7. Storage requirements as a function of problem size 

8. Total number of problems attempted 

9. Total number of problems solved 

10. For problems solved: 

a) Computation time range 

b) Average computation time 

11. Sizes of test problems 

a) Number of constraints and variables 

b) Total problem byte requirements 

12. Method of generating test problems 

13. Method of validating the algorithm's accuracy (where accuracy is the 

difference between the optimal solution and the solution produced by the 

algorithm) 

Ignizio suggested the following measurement standards: (Ignizio, 1971:10) 

1. Computation time. Report all computation times in the same unit (e.g., 

seconds). Report both: 

a) Total computation time 

b) CPU time only 

2. Accuracy 

a)     Undefined, if the problem is not solved or does not converge and no 

bounds are known 
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b) Error relative to a bound, if the bound is known and the problem does 

not converge 

c) Error relative to the optimal solution, if the problem is solved and the 

optimal solution is known 

Ignizio does grant that some things cannot be standardized, such as programmer 

efficiency. He argues convincingly, however, that implementing standards will establish 

control over the controllable factors and provide a more representative result. 

Recognizing the need to establish a concise set of principles for guidance, Jackson 

Boggs, Nash and Powell, sought to clarify existing guidelines for assessing 

computational tests. Their first consideration, similar to Ignizio's (1971) suggestion, was 

to specify the guidelines for publishing papers making claims about computational 

performance: (Jackson et al., 1991:414) 

1. Results presented must be sufficient to justify the claims made 

2. There must be sufficient detail to permit reproducibility 

3. It is not the referee's job to reproduce the results 

The third item is to encourage the free flow of scientific knowledge, while still 

encouraging the referee to ascertain the satisfaction of the first two items. 

Based on the degree of the claim of computational studies, Jackson et al., classify 

the studies into different groups: (Jackson et al., 1991:416) 

l.   Preliminary testing: Those intended to show the feasibility or promise of a new 

algorithm, one generally not intended for widespread distribution. Demonstration of 

performance on several appropriate problems is sufficient. 
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2. More detailed experimentation: Intended to assess the strengths or weaknesses of an 

implementation. A range of problems should be examined, and greater detail of the 

implementation of the algorithm must be provided. 

3. Detailed comparison of the performance: The most difficult type of experiment, this 

governs comparing the algorithm with prominent methods available. Performance 

measures must be appropriately chosen, based on the purpose for which they were 

designed. 

Their main issue was to delineate at what point a detailed, rigorous, statistically- 

based computational experiment must be performed. They concluded that at the point 

when an author makes a "comparative" claim, specifying that one algorithm is "better" 

than another on some measure, he must provide enough evidence to support the claim 

(usually computational results). (Jackson et al., 1991:416) 

Next, they addressed the concern of proprietary software. They recognized the 

desire of some individuals or companies to protect their intellectual property, but felt that 

the theoretical framework of an algorithm could be presented without disclosing the 

implementation of the algorithm. (Jackson et al., 1991:417-418) 

Jackson, et al., recommended that standard test sets and test set generators be used 

whenever possible, to enable comparisons with results from other existing algorithms. 

When new problems are used in a computational evaluation, they should be submitted for 

free distribution, or else maintained by the author long enough to allow others to verify 

the experimental results. (Jackson et al., 1991:420) 
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They categorized the performance measures used in comparing commonly used 

algorithms into four groups: (Jackson et al., 1991:420-421) 

1. Efficiency: A measure of both the computational effort required and the quality of 

the solution (CPU time, number of functional evaluations, number of iterations) 

2. Robustness: Ability to recover from an improper input 

3. Reliability: The size of the class of problems the code can solve 

4. Ease-of-use: The amount of effort required to use the software (set-up, 

documentation, structure) 

They furnished guidelines on analyzing the results. Experimenters should do 

more than report the solution times of their algorithm; if they use a test problem 

generator, they can examine many test problems, and can perform a statistical analysis of 

the results. Even if the sample size of the results is small, Jackson, et al., suggest using 

appropriate statistical tests to gain insights into the problem. 

Finally, they emphasize documenting the type of platform upon which the 

program was run, particularly when using multi-processor (parallel) computers. 

Sklar, Armstrong, and Samn (1990) took an interesting approach in evaluating 

two of their heuristics. They investigated a related airlift problem, where the objective 

was to minimize the number of crews required in the airlift, subject to crew rest 

requirements and the completion of all missions within the specified time frame. 

They simplified the problem considerably by assuming that all the routes, 

missions, and associated aircraft had already been defined. Additionally, they did not 

consider aircraft internal configuration, ground staff or parking availability, airport 
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curfews, deadheading of crews or crew training. They justified their "simpler" model by 

claiming that it could be used to provide quick insights into an airlift exercise, and 
> 

provide a starting point for more elaborate computer simulations which can take the other 

factors into account. (Sklar, et al., 1990:63-64). 

They compared their heuristics two different ways. First, they compared their two 

heuristics against each other on several criteria: quality of solution, bounds on solution, 

and computational effort. They found that their Algorithm A had solutions requiring 

about 10% fewer crews than Algorithm B, but that often the problem size precluded the 

use of Algorithm A. They pointed out that Algorithm A could provide a lower bound on 

the number of crews required and an upper bound on how far from optimal a solution 

might be. (Sklar, et al, 1990:73) 

Second, they compared the algorithms with a simulation approach. They used an 

Air Force simulation model employed to estimate the minimum number of aircrews 

required to achieve a target utilization rate for a fixed number of aircraft. The desired 

utilization rate is determined by the amount of cargo to be transported and the aircraft 

capacity; they report the actual achieved utilization rate is determined mainly by the 

number of aircrews available and where those crews are propositioned along the route. 

The Air Force policy was to use a rule of assigning a number of crews at an enroute base 

proportional to the number of aircraft transiting that base. 

Sklar, et al., determined the optimal value of the constant of proportionality by 

simulation, and compared that to the value they found via their algorithms by using an 

actual, realistic airlift scenario for both algorithms. They declared that their algorithms in 
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general performed at least as well as and usually better than the Air Force's assignment 

policy. Additionally, the simulation exercise consumed several hours of computer time; 

their algorithms used only a few seconds. (Sklar, et al., 1990:76) 

Classifying Heuristics and Algorithms 

Barr, et al., classify experiments with algorithms into two categories: comparison 

of different algorithms for the same class of problem, and characterization of an 

algorithm's performance in isolation. (Barr, et al., 1995:7) In the first category, 

comparison, the preferred method is to test the algorithm against the best competition, 

usually a well-known or published heuristic or algorithm. "If other methods do not exist, 

then a more general method, such as one based on linear or integer programming, or a 

simple greedy approach, should serve as a baseline." The second category, describing the 

algorithm's performance, has an objective of gaining understanding of the method and 

the factors which influence it. 

Test Sets 

Some authors, such as Bodin and Golden (Bodin and Golden, 1981) have tried to 

classify algorithms according to their ability to solve certain types of problems. Rardin 

and Lin (1982) point out that investigators who wish to study algorithms in detail 

generally must rely on experimentation. (Rardin and Lin, 1982:9) They considered the 

problem of finding adequate test problems to realistically challenge an algorithm. They 

list three sources of test problems: published test examples conceived by researchers, 

documented data sets taken from "real world" applications, and randomly generated 
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problem sets. They tend to favor the real data sets or the randomly generated sets; they 

feel that the published test examples are usually small in size, specialized to demonstrate 

a certain particular algorithmic behavior, and that there are few examples. 

One uncertainty about deliberately performing tests on small data sets is scaling. 

Not only would the researcher have to be concerned about the validity of extrapolating 

those results to what could be expected with realistic problem sizes, but there are the 

considerations of solution time or storage the algorithms would require to solve large 

problems. Forecasting performance would be an issue necessary to face. 

Rardin and Lin (Rardin and Lin, 1982:10) point out that real data sets are 

generally preferred, but there are problems with them. The data may not fit the particular 

algorithm that the researcher wants to investigate, or if the data are drawn from a test 

population, there may be questions about how well they fit the actual population of 

interest. 

Problem sets produced by random generation code are another option. For those 

who question why an investigator would want to test anything other than an actual 

sample of the subject population when doing so would raise doubts about the validity of 

the conclusions from the experiment, Rardin and Lin explain that it is the same reason 

why rats are used in medical research and models of aircraft are used in wind tunnel 

experiments. (Rardin and Lin, 1982:11) Experiments with laboratory models are not 

restrained by physical or ethical considerations. They offer a number of advantages: 

(Rardin and Lin, 1982:11-12) 
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1. Quantity. If an algorithm is specially "tuned" to a particular data set, it may behave 

very differently when applied to another similar problem. An experimenter with 

limited numbers of data sets may not detect the anomaly, but an experimenter who 

can run the algorithm on a large variety of randomly generated data sets may. 

2. Variety. A computational researcher would be interested in testing his or her 

approach against problems spanning the population of interest in order to gain 

confidence about the results and insights into the nature of the problems that the 

algorithm may find easy or difficult. A cleverly-designed problem generator can 

produce a nearly unlimited variety of problem sets for testing. 

3. Measurability. Most computational experiments are concerned with determining the 

solution time, the quality of the solution, or a combination of the two. When test 

problems are drawn from real world problem sets, often the optimal solution and 

value are unknown. In these cases the investigators must usually resort to comparing 

their results to that of the best known solution. If, on the other hand, the problem sets 

are generated, they can be constructed such that the optimal solution is already 

known, giving the experimenter a better standard against which to measure the 

algorithm's performance. 

4. Portability. A requirement for other researchers or referees to be able to reproduce 

someone's efforts is that they have access to the same data set. The Internet has 

certainly advanced the portability and accessibility of data for researchers, but for 

extremely large data sets, availability can still be problematic. Additionally, the 

largest data sets cannot be published in standard journals. If the data set were instead 
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produced by a random generation scheme, the code for that would be of a more 

manageable size. In addition, a wide range of large data sets can be easily generated 

by changing the generator's parameter settings, and any other researcher with an 

equivalent computer and the same parameter settings should be able to reproduce the 

problem sets. 

5.   Reportability. Summary of results from testing large data sets can be easily reported 

in a table, tabulated by parameter settings and random number seeds used. 

Rardin and Lin addressed the concern about the validity of the conclusions drawn 

from testing on samples drawn from a population. They remark that traditionally, 

researchers could only test on whatever data they had available, and hope that those data 

were representative. They "believe serious attention to formal validation of test problem 

sources could add a great deal of confidence to results without sacrificing the 

convenience of experimentation on laboratory models." (Rardin and Lin, 1982:12-13) 

They also believe that most researchers are likely to do at least one form of screening for 

validity: face validity. Most researchers informally check to see if they match real data, 

at least in important parameters like coefficient size and density. 

To answer the question whether inferences about algorithm performance made by 

experimenting on test problems is valid for the whole population, one method would be 

to compare the algorithm's performance on real problems to its performance on sample 

test problems. A match in the performance lends credence to the conclusion that the 

algorithm may be acceptable. Rardin and Lin suggest a more rigorous method to measure 

algorithm performance, focusing on: (Rardin and Lin, 1982:13) 
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1. Robustness. Are the solution times and accuracies from proposed test problems 

comparable to those from real data? 

2. Convergence Rates. Are the rates and patterns of algorithmic convergence with test 

problems typical of those obtained from real data? 

3. Step Utilization. Is the distribution of activity within the steps and phases of the 

algorithm similar to that expected from real data? 

4. Numerical Stability. Are controls on numerical accuracy (e.g., basis reinversion) in 

solving test problems required as often as, or more often than, with actual data? 

5. Storage Utilization. Do the patterns of memory utilization and storage with test 

problems mirror those with real data? 

Rardin and Lin conclude that deciding on a test problem source is a dilemma 

facing each computational experimenter. Until convenient techniques for validation 

problem generators and for forecasting the impact of problem size are developed, 

researchers will have to make the tradeoff between the convenience of using random 

problem generators and the confidence from utilizing actual data. They recommend that 

the tradeoff be made based on the purpose of the testing: If the testing is being conducted 

early in the development of an algorithm, when testing the viability of the concept of the 

algorithm, experimental convenience is likely to be a greater concern than the validity of 

the test set, so random problems are typically satisfactory. As the algorithm matures, and 

requires only fine tuning, validity becomes the main concern, and the experimenter 

should favor testing against real applications data. Finally, examiners concerned about 
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verifying an algorithm should stress the use of randomly generated data sets, since they 

would find it important to know the optimal solution and have access to a large variety of 

problem types. 

Measuring Performance 

Barr, et al., specify several questions to consider when testing an algorithm. 

(Barr, et al., 1995:8) 

1. What is the quality of the best solution found? 

2. How long does it take to determine the best solution? 

3. How quickly does the algorithm find good solutions? 

4. How robust is the method? 

5. How "far" is the best solution from those more easily found? 

6. What is the tradeoff between feasibility and solution quality? 

The performance measures fall into three general areas: solution quality, computational 

effort, and robustness. 

Solution Quality 

If an algorithm which determines an optimal solution is being considered, the user 

is most likely interested in its speed and rate of convergence toward that optimal solution. 

When a heuristic is under consideration, the user is more likely concerned with how close 

to the optimal solution the heuristic comes. If an optimal solution is available, it can be 

used for a clear comparison to express a percent deviation from optimal. If an optimal 
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solution is not available, the comparison should be made from a tight upper (lower) 

bound to determine the percent deviation. 

Computational Effort 

Computational effort is an examination of the speed of the solution. Several 

measures include: (Barr, et al., 1995:10-11) 

• Time to Best-Found Solution. A measurement of the time of all 

preprocessing, computation and postprocessing to find the "best" 

solution established as the baseline. 

• Total Run Time. The execution time up to the algorithm's stopping 

criterion. 

• Time Per Phase. When the heuristic is multi-phase (i.e., initial feasible 

solution, improved solution, final solution), a measure of time and 

solution quality at the end of each phase. 

Any reporting method must account for differences in computational effort on different 

computing systems. 

Another method of reporting solution effort when the result converges toward the 

best solution is the ratio of time to reach a solution within 5% of the best-found solution 

to the time to reach that best solution: (Barr, et al., 1995:11) 

time to within 5% of best /«% 
vm time to best found v ' 

When the heuristic converges slowly toward a solution, this provides a measure of the 

computational effort to reach a "good" solution, even if it is not the optimal solution. 
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Several authors chose to use the computational effort as their prime measure in 

evaluating algorithms. Braitsch (1972) did a comparison of four quadratic programming 

algorithms. He recognized that he needed to use some other criterion for comparison 

than processing time, to compensate for discrepancies due to programming or computer 

differences. He chose to use iteration count as the main criterion to compare the rates of 

convergence, but he did try to consider the number of tableau elements that must be 

transformed at each iteration to draw conclusions about what the accurate measure of 

computer time should be. Golden (1976) compared two shortest path algorithms and 

used the running time as the main rating criterion. He compared them as well on the 

basis of the variable list length. 

Some authors recognized the need to define computational effort in terms more 

general than running time or iteration counts, taking into consideration the operating 

environment as well. Glover, et al, (1974) did an in-depth computational comparison of 

solution algorithms for transportation problems. First, they performed all the testing on 

the same computer, with the same compiler, and the same problems. They then solved 

the same problems with one of the algorithms on three different computers. They found 

that on a computer traditionally considered to be 3-4 times faster (than the original one 

used), the algorithms ran an average of only 12% faster. They used this demonstration to 

stress the lesson that "in any attempt to compare the performances of different codes, it is 

essential that the same problems, the same machine, and the same compiler be used." 

(Glover, et al., 1974:808-809) 
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Hooker (1995) took an innovative approach toward evaluating algorithms. He 

claims that we have an over-reliance on competitive testing to compare the performance 

of algorithms, resulting in algorithms which are specially "tuned" to perform well on the 

specific type of problem under consideration, wasting scientific effort in the process. He 

suggests instead that the development of algorithms concentrate on advancing our 

understanding of what makes an algorithm work well, in a scientific approach of 

controlled experimentation, rather than simply competing on the basis of speed: 

We have saddled algorithmic researchers with the burden of exhibiting 
faster and better algorithms in each paper, a charge more suited to software 
houses, while expecting them to advance our knowledge of algorithms at 
the same time. I believe that when researchers are relieved of this dual 
responsibility and freed to conduct experiments for the sake of science, 
research and development alike will benefit. (Hooker, 1995:41) 

Robustness 

Robustness is a determination of the ability of the heuristic to perform well over a 

wide range of test problems. Barr, et al., encourage the tester to demonstrate the 

robustness over the wide range of problems before fine-tuning it for a specific case or 

scenario. Likewise, a sensitivity analysis of the parameter settings gives a gauge of the 

robustness of the heuristic. They also encourage testers to report negative results when 

the heuristic fails a specific problem type. 

Criteria 

Once it has been determined how to test heuristics for comparisons, it still must be 

decided what criteria will be the measures of interest for the comparison. Golden and 
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Stewart recognized that there are several valid criteria for comparing heuristic algorithms: 

(1985:208) 

a. Running time is a key consideration between competing algorithms. 

b. Ease of implementation is another important consideration, particularly if the 

algorithm only marginally outperforms an alternative which is simpler to 

implement. 

c. Flexibility refers to the ability of an algorithm to handle variations in the 

problem. 

d. Simplicity in algorithms more readily permits various kinds of analysis. 

Nonetheless, implicitly they agree that the most important criterion for comparison is the 

solution quality—how well it performs on its design measure of merit. They devote most 

of their effort to a discussion of methods for comparing heuristics. 

Statistical Comparisons 

When an experimenter interested in establishing the usefulness of a heuristic has 

determined what test standards to use for the testing, and which criteria are of primary 

interest, the actual statistical means of making the comparison must still be determined. 

This section will survey several of the statistical tests which can be used for the 

comparison. 
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Dominance 

Perhaps the easiest way to compare heuristics is to calculate selected descriptive 

statistics and identify the performance of heuristics in terms of these statistics. Several of 

the comparisons which might be made for a minimization problem (such as when the 

measure of interest is run time) are: (Golden and Stewart, 1985:210) 

a. The number of times a heuristic is best or tied for best 

b. Average percentage above a lower bound 

c. Average rank (among multiple heuristics) 

d. Ratio of solution to lower bound 

An algorithm which outperforms others on all of these measures may be said to 

dominate them. 

Wilcoxon Signed Rank Test 

A more systematic method of making comparisons between heuristics may be to 

use the Wilcoxon Signed Rank Test, a well-known non-parametric statistical test. A brief 

description of the Wilcoxon Signed Rank Test is provided. X and Y represent two 

different heuristics tested, Xj and yj represent the performance of each respective heuristic 

on observation i with regard to the measure of merit of interest, E[x] and E[y] represent 

the expected value of the performance of the respective heuristics on the measure of 

merit, and / ranges from 1 to n (the number of observations): 
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Assumptions: (Golden and Stewart, 1985:210-212) 

a. The data consist of matched pairs (xi5 y;), with the difference defined as 

dj = Xj - y; 

b. Each dj is a continuous random variable 

c. The distribution of each dj must be symmetric 

d. The pairs (xi5 yj) represent a random sample from a bivariate distribution 

Given E[z] is the expected value of some measure of interest z, and x and y are the 

measures for two procedures which we wish to compare, then our statistical test would 

develop as follows: 

Null Hypothesis: 

H0: E[x] = E[y] 

Alternative Hypotheses: 

Ha: E[x] * E[y], E[x] > E[y], or E[x] < E[y] 

Test Statistic: 

The test statistic, W, is computed by ranking the absolute value of the differences 

|Xj - yj. Ties in the ranks are resolved by using the average of their ranks. If a difference 

of zero is measured, that observation is discarded, and n is decremented by one. A signed 

rank, Rj, is given to each observation, with magnitude determined by the rank of the 

observation, and sign determined by the sign of X; - y,. W is then defined by the sum over 

I'ofRs. 
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Rejection Region: 

The rules for rejecting the null hypothesis (at the selected a significance level) are 

given below. The alternative hypotheses are listed with the corresponding rejection 

regions, where the critical values are found in most texts on nonparametric statistics such 

asConover(1980): 

Table 3 

Rejection Rules 

E[x]*E[y] W>W,.a/2 or W<Wa/2 

E[x]>E[y] W>W!.a 

E[x]<E[y] w<wa 

Golden and Stewart point out that for n > 10, the critical values can be 

approximated by: 

Wa = Z(a)Vn(n + l)(2n + l)/6 (3) 

Rejection of the null hypothesis implies that we are unable to accept the hypothesis that 

E[x] = E[y]; failure to reject the null means we would not make that conclusion at the 

given confidence level. The Wilcoxon Signed Rank Test determines if a difference exists 

in the location of two populations, by comparing the ranks of the differences on two 

heuristics at a time. It is a more powerful test than the sign test described below, but it 

requires stronger assumptions be made. (Golden and Stewart, 1985:212). Since it is only 

useful for comparing two heuristics at a time, an experimenter comparing three or more 

heuristics at once might consider using the Friedman Test described below. 
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Sign Test 

A variant of the Wilcoxon Signed Rank Test is the sign test. The sign test is not 

as powerful a statistical test as the Wilcoxon Signed Rank Test; however, it does not 

require the same stringent assumptions as the Wilcoxon Signed Rank Test. (Golden and 

Stewart, 1985:212) If we are testing two heuristics (X and Y) and assume that they are 

equally likely to produce a better solution on the measure of interest, i.e., P[yj - x} > 0] = 

0.5, then the probability that n or more positive (or negative, for that matter) differences 

would be found in m observations is: 

m 
2(jf)(0.5)k-(0.5)m-k (4) 
k=n 

A low probability would lend credence to the supposition that the two heuristics 

are not equally likely to produce the better solution. 

Friedman Test 

When making comparisons of three or more heuristics, one may consider using 

the Friedman test rather than trying to compare combinatorial pairs of heuristics. (Golden 

and Stewart, 1985:212) The only assumption required by the Friedman test is that the 

samples from the heuristics form a normal distribution with common variance. 

Let Rjj be the rank (from 1 to k) given to heuristic j (j = 1,..., k) on problem i. 

Again, in the event of a tie, average ranks are used. This test is analogous to the ANOVA 

test of homogeneity and is typically used to test the null hypothesis: 

Null Hypothesis: 

H0: E[X] = E[Y] = ... = E[Z] for each of j different heuristics. 
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Alternative Hypothesis: 

Ha: At least one of the means is not equal to the others 

Test Statistic: 

(n-\)-\BF-nk(k + \)2 /4] 
TF = -LL. ^ J (5) 

AF-BF 

n 

where: Rj=SRij     j = l,--.,k (6) 
i=l 

11     *   ,„   ,2 
AF=EZM<Rij)2 (?) 

i=l 

1  k 

BF=-ZRJ («) nrr   J 

and where k is the number of heuristics under comparison. 

Rejection Region: 

TF>Fl-a,(k-l),(n-l)(k-l) 

Rejection of the null hypothesis suggests that the researcher may want to investigate 

further to determine which is the better heuristic. 
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McNemar Test for Significance of Changes 

In the event the investigator suspects that there will be a high proportion of 

instances when the different heuristics "tie" on their performance, one other way to test 

for differences is the McNemar Test for Significance of Changes (Conover, 1980:130- 

133). This test presupposes that the data are not ordinal as in the sign test, but nominal, 

with categories "0" and " 1".   The pair (1,0) indicates Xj outperforms Yj on the measure 

of merit; (0,1) indicates Yj outperforms Xj. McNemar's test is a variant of the sign test 

described above, subject to the following assumptions: 

1. The pairs (Xj, Y;) are mutually independent. 

2. The measurement scale is nominal with two categories for all Xj and Yj. 

3. The difference P[Xj =0, Yj =1 ] - P[Xj =1, Yj =0] is negative for all i, or zero 

for all /, or positive for all i. 

Null Hypothesis: 

H0: P(X; = 0, Yj = 1) = P(Xj = 1, Yj = 0)      for all i 

Alternative Hypotheses: 

Ha: P(Xj = 0, Yj = 1) * P(X; = 1, Y; = 0)        for all i 

These hypothesis can simplify into: 

Null Hypothesis: 

H0: P(X; = 1) = P(Yj = 1)  for all i 

Alternative Hypotheses: 

Ha:P(Xi=l)*P(Yi=l)   for alii 
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Our null hypothesis is that we expect the number of (1,0) and (0,1) pairs to be 

equal. The test statistic and rejection rule both depend on the sample size, and their 

calculation is fairly complicated. The interested reader may refer to a nonparametric 

statistics text for details. (Conover, 1980:130-133) 

For this test, rejection of the null hypothesis would suggest that two heuristics do 

not perform equally well. Use of a one-sided rejection rule can determine which heuristic 

provides the best solution. 

Expected Utility 

Each of the tests described above are reasonable statistical tests for comparing 

heuristics, though they are all tests of location (i.e., mean or median), and give no 

indication of the shape of the distribution. In consideration of this, Golden and Stewart 

proposed an expected utility approach to compare multiple heuristics. They explain that, 

though it may be a simple and useful approach, it depends on somewhat arbitrary 

assumptions. (Golden and Stewart, 1985:213) 

The focus of the technique is the notion that the desired heuristic not only 

performs well on average, but also rarely performs poorly. Thus, the expected utility 

approach reveals a consideration of the downside risk as well as the expected accuracy. 

Step 1. Fit a gamma distribution to the histogram of frequency vs. performance 

deviation from a lower bound. 

Step 2. Select a risk-averse decreasing utility function of the form u(x) = a - ß e , 

where a, ß, t > 0 and x is the percent deviation from the lower bound. 
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Step 3. Calculate the expected utility for each heuristic and select the one that 

yields the largest value. 

This procedure is described in detail in Golden and Stewart. (Golden and Stewart, 

1985:213-214) In step one, they chose a gamma function for its computational 

convenience (it has a simple density distribution, and parameter estimation via the 

method of moments is trivial). In step two, they chose a utility function with t as a 

measure of the risk aversion, though they give no rigorous justification for their choice of 

a risk averse utility function. 

Reporting 

Once the testing is completed, the researcher must report the results in a rigorous 

manner. These guidelines are established to help authors report the computational testing 

results to others: 

1. Reproducibility—document to allow others to substantially reproduce 

the results. (Barr, et al., 1995:19) 

2. Computing Environment—document the make and model of the 

computer; number, type and speed of processors; operating system and 

version; compiler settings; and system load. (Barr, et al., 1995:19-20) 

3. Timing—document how times are measured, differentiating between 

user, system, and real time. (Barr, et al., 1995:20-21) 

4. Parameter Selection—if the code allows for different parameters, 

specify the parameter settings, the process by which they were 

selected, reason for changes in parameters for different problems, 
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evidence that the parameter values are generalizeable, and estimates of 

time to fine-tune the algorithm. (Barr, et al., 1995:21-22) 

5. Statistical Techniques—when the main thrust of the research is to 

demonstrate that a particular heuristic outperforms another, a statistical 

comparison of results should be included. If sample size is large 

enough, f-tests or ANOVA may be used. If the sample size is not large 

enough, nonparametric techniques (e.g. sign test) may be used, even if 

the intent is to show that there is no statistical difference between the 

solutions. (Barr, et al, 1995:22) 

6. Variability of Results—experiments should be designed to reduce 

variability by running longer experiments and using more data. If the 

experiment is done on a computer which may be shared, it should be 

run on a lightly loaded machine. (Barr, et al., 1995:23) 

7. Analysis and Interpretation—report not only the experimental results, 

but the investigators conclusions. Detail the exploration of quality vs. 

computational effort, time vs. problem size, and robustness vs. quality. 

Unexpected or anomalous results should be highlighted, and explained 

when possible. (Barr, et al., 1995:23) 

Summary and Applicability 

The principles of validation and verification apply most directly to models which 

attempt to accurately represent some aspect of the real world. Simulation and wargaming 

are prime examples of those types of models. However, many of the same techniques 
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used to establish those models' validation and verification, as described above, can be 

applied in testing the credibility and applicability of the DAKOTA scheduling program, 

or any heuristic method. 

A comment common to most of the literature reviewed was an insistence that the 

single most important criterion in the evaluation of any heuristic is its effectiveness in 

meeting the requirements of a given problem. With this point as the main concern, this 

thesis delineates how to evaluate DAKOTA for the specific problem of its application to 

USAFE's OSA scheduling problem. 

Obviously, this is not an all-encompassing review of solution efforts. For 

problems ranging from the Traveling Salesman Problem, to Vehicle Routing Problems, to 

Job Shop Scheduling, as the problem size increases, the difficulty of solving the problem 

to the optimal explodes. Thus, nearly all the authors cited recommend using a heuristic, 

or approximate, approach to the solution. The question then becomes: If we cannot 

guarantee that our solution to the Vehicle Routing Problem is optimal, how good is it? 

That issue is addressed in subsequent chapters. But first, in order to gain an 

understanding of the environment in which DAKOTA works, the next section compares 

several passenger airlift scheduling programs in use today. 
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III. Discussion Of Contemporary Scheduling Systems 

Alternative Scheduling Systems 

The problem of scheduling OSA flights is not unique to USAFE. Different 

commands, services, corporations and even nations face the daunting task of developing 

schedules to best utilize their fleets and personnel. This chapter examines several of the 

scheduling systems which are used by agencies today, compares them and their features, 

and reviews the opinions of several subject experts regarding the systems. The systems 

considered are: Andromeda, ITAS, SAMMS, and JLIS. Andromeda is discussed in 

depth, since it is the system currently used by USAFE. 

Andromeda 

Currently, USAFE schedulers use the Andromeda FS flight planning system to 

accomplish their work. The Andromeda system, by Camp Systems, Inc., is a mission 

management system which assists in both scheduling flights and in tracking the flights in 

progress. It is a popular planning tool in the corporate world, used by 78 organizations 

and customers including the Federal Aviation Administration (FAA), Canada's defense 

department, Norway, Sweden, and the United Kingdom's Royal Air Force's 

Queensflight. 

Andromeda FS is eleven years old, so it has most of the "bugs" worked out of it. 

(Finn, 1996) Most of the customers use a DOS-based version, though several users have 
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a Windows-based version. The most recent release is a Windows 95 version. It is 

network-compatible, so schedulers can connect and do their work from remote locations. 

Andromeda is not an automated scheduling or decision support system. It 

provides a convenient, organized method of coordinating the needs of the passengers, the 

crews' training and scheduling requirements, and the aircraft and airfield-related 

constraints. 

When the schedulers need to schedule a request, they look at missions and 

requests already scheduled, manually determine the mission on which to schedule the 

request, and then enter that information into the Andromeda system. Andromeda then 

calculates the required departure and arrival times, distances, fuel requirements, and other 

flight data for the mission. 

Andromeda does not automatically select the mission aircraft, but it does simplify 

many of the tasks associated with scheduling, like computing enroute times. If a 

nonaligned nation must be circumnavigated, it is easy to change the required flight time 

manually. For instance, Andromeda may allot 1.3 hours for a flight from Ramstein AB to 

Aviano AB, Italy. The schedulers can manually change the time to 2.0 hours to account 

for flying around Austria, if necessary. 

Table 4, on the following page, lists many of the features of Andromeda FS: 
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TABLE 4 

ANDROMEDA'S FEATURES 

FEATURE DESCRIPTION 

Airport Atlas 
Airports Airports, location, identifiers 
Airport Facilities Services (fuel, etc.) available 
Tracks Slot Reqts Flight planning system accounts for "slot times" for takeoff or landing 

required at some airports 
Runway Length Length of longest runway available 
Sunrise/Sunset Gives seasonal changes in sunset and sunrise 
GMT Conversion Gives times in universal GMT/"Zulu" and local 
Curfews Quiet hours at appropriate airfields 
Jeppesen Data Includes navigational aids and instrument approaches available 
Aircraft Data 
Speed Accounts for airspeeds of different types of aircraft 
Fuel Endurance Accounts for fuel ranges of different types of aircraft 
Variable Burn Rate Accounts for changes in fuel consumption rate with changes in temperature 

and aircraft altitude 
A/C Limitations Aircraft weight, fuel, runway needs, seats available, other limits 
Aircrew 
Crew Scheduling Automatically schedules crews for flights 
Crew Training Schedules required training for crews 
Crew Currency Tracks currency requirements for crews 
Crew Time Off Tracks post-flight time off for crews 
Crew Duty Day Tracks maximum duty day for crews 
Crew Logbooks Maintains logbook of crew flight activity 

Flight Mgt 
Operations Manager Tracks fleet activity at a glance 
Track Enroute A/C Monitors status of enroute aircraft 
Flight Time Tracks total flight time on each aircraft 
Flight Mgt Control Tracks aircraft, passengers on each flight 
Passenger Info Schedules and tracks passengers, general remarks allowed 
Track Schedule Changes Audit trail of all changes made to a trip 
Scheduling Checklist Provides guidance to scheduler of scheduling requirements 
Recurring Trips Detects common flights for automatic scheduling 
Radius Search Notifies scheduler of nearby airports for refueling when needed 
Flight Planning 
Seasonal Wind Factors Accounts for seasonal winds when computing enroute times 
Great Circle Routes Determines great circle route distances between points 
General 
On Line Help Help available on-line 
Reporting System System of generating reports for flight management 
Customized Reports Supports user-defined reports 
Greaseboard/Gantt Charts Visual or Gantt chart scheduling aid 
"Street Light" Warnings Red indicates "hard" error/violation; Yellow indicates "soft"; Green is OK 
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In summary, Andromeda's strengths are its ubiquity, its extensive airport atlas, 

and its notable ease of use. Its weaknesses are the lack of a decision support system and 

an optimization routine. 

ITAS 

The In-Theater Airlift Scheduler (ITAS) was developed in 1994 for the Pacific 

Air Forces (PACAF). Developed through an affiliation between the Rome Laboratories 

and the Kestrel Institute, ITAS is under continuous development. It is not used for 

routine daily scheduling, most of which is currently done manually. Its purpose is to 

support contingency operations, such as the Hurricane Iniki evacuation or exercises 

(Lemmer, 1996). Designed for that aim, it runs on an Apple Powerbook notebook 

computer, so it is extremely mobile, a crucial feature for contingency operations. 

Users input the number and types of aircraft, the number of crews, the movement 

requirements and port features. ITAS produces a candidate schedule, simultaneously 

scheduling the aircraft, aircrews, ground crews for unloading, and parking spaces at the 

ports. Most of the process is automated, with only a few high-level decisions made by 

the scheduler. The output does not necessarily represent a feasible schedule, however, so 

the scheduler must review the schedule, note any discrepancies (constraint violations), 

and input the necessary revisions for the next iteration. While this seems to be an 

inconvenience, the users are not vocal in their complaints; the revisions take only about 

five minutes, instead of the hours required before implementation of ITAS. (Burgess, 

1996) 
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Generally, the resultant schedule is not produced in an easily readable format. 

One of the more convenient formats for an output is in a Gantt-like bar chart; another is 

in the format of an Air Tasking Order (ATO). 

ITAS is extremely good at scheduling Time-Phased Force and Deployment Data 

(TPFDD). The TPFDDs are a relational database scheme which the U.S. Transportation 

Command and the component services use to specify the transportation requirements of 

an operation such as Bosnian airlift or hurricane evacuation. Smith and Parra (1995) 

report that ITAS' algorithm is extremely fast compared to other TPFDD scheduling 

systems. A typical TPFDD of about 10,000 movement records scheduled via alternative 

programs may take several hours to solve using JFAST, or 36 hours using FLOGEN. It 

can be solved by ITAS in one to three minutes. He says that it "is orders of magnitude 

faster than any other TPFDD scheduler known to us." (Smith, et al., 1995:6-7) 

SAMMS 

The 89th Airlift Wing, at Andrews AFB, MD, provides the presidential airlift and 

airlift for other prominent government officials. (Manney, 1996) The presidential airlift 

on Air Force One is handled on a case-by-case basis, due both to the visibility of the 

mission, and to the fact that there are only two aircraft for the mission and only one is apt 

to be tasked at a time. 

The scheduling for the rest of their OS A is conducted with the assistance of 

SAMMS (Special Airlift Mission Management System), a computer program which was 

developed in-house for scheduling support. While it is a manual scheduling system, it 

does have features to aid the scheduler. It weighs predominant winds in its distance/time 
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calculations. It produces reports which they send to Command Post and the Passenger 

Terminal to help coordinate the missions. 

Their scheduling policy is to use the smallest, most cost effective aircraft possible 

to support a mission. Of their seven C-20's, three C-9's, and five C-137's, an average of 

five aircraft are in use each day. Most of their missions, about 75%, are flights which 

will remain off-station overnight. 

Maj Manney was not convinced that "optimization", in terms of reducing mileage 

while serving as many passengers as possible, would be germane to their mission for 

several reasons: 1. Most of their missions are RONs, where the crew and plane wait at 

the airfield until the passengers are ready to return. 2. For obvious reasons, the plane will 

not leave high-ranking passengers at one airport in order to travel to another to pick up 

additional passengers.   3. Again, for obvious reasons, the planes are likely to travel 

straight from origin to destination and back, rather than diverting to other airfields to pick 

up additional passengers. Maj Manney concluded that, though an optimization 

subroutine in their scheduling system may not necessarily help them, it probably 

wouldn't hurt much either. 

JLIS 

The Joint Logistics Airlift System (JLIS) is a follow-on to the earlier Navy Air 

Logistics Airlift System (NALIS). Developed in-house by the Navy Air Liaison Office 

(NALO), it is the ascendant scheduling system for continental U.S. (CONUS) based OSA 

missions. The NALO (Steedley, 1996) says that by direction of the Office of the 
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Secretary of Defense (OSD), JLIS was ordered operational as of 1 Oct 95. Not all of the 

bugs were fixed by the release date, but they claim significant progress since then. 

JLIS has many strengths and equally severe weaknesses. Its strengths generally 

are derived from the versatility of the Oracle database system on which it runs; the 

weaknesses stem from the poor user interface. (Noble, 1996) 

Strengths: 

1. Users report a high degree of confidence in and satisfaction with the Oracle 

database. Among other things, its structure permits multiple schedulers to 

work in parallel without conflicts. (Steedley, 1996) 

2. Security. Individuals in the units having access to the program each have their 

own login identification for security. (Steedley, 1996) 

3. Constraints. The versatility of the database allows it to track a large number 

of constraints in the background, ensuring their satisfaction, flagging the 

operator only when there is a violation. Among the constraints modeled are 

aircrew restrictions (length of duty day, interval between duty periods), fuel 

and aircraft capacity constraints, passenger/cargo mix and available-to-load 

times, airfield restrictions (Notices to Airmen, quiet hours, sunrise/sunset), 

aircraft speed, and quarterly seasonal winds aloft. NALO reports that JLIS 

does a more comprehensive check on the constraints than does Andromeda. 

(Pellissier, 1996) 

4. Automatic loading. Eases the workload of the schedulers by relieving them of 

the requirement to manually enter missions and requests. Each flying 
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squadron has access to the database, and they are the ones who directly input 

the aircraft status, maintenance schedules and periodic inspections, aircraft 

configuration, and crew training requirements. Additionally, the users are the 

ones who input the requests. Requests can be entered by standard message 

traffic; JLIS reads the message, automatically entering the request into the 

database or else flagging the scheduler with the message's date/time group for 

hand-entry if there is a formatting error. Secondarily, requests can be entered 

either by modem or via Internet, again with security-restricted access. Finally, 

requesters are able to hand-walk their requests through the system for manual 

entry. In any case, having the units or individuals enter the aircraft missions 

and requests not only reduces the workload on the schedulers, but ensures that 

the most up-to-date information is being distributed, since those with most 

direct access to the information are the ones who enter it into the database. 

(Steedley, 1996) 

5. Automatic schedule distribution. Another attraction of JLIS is its automated 

schedule notification system. When a schedule is crystallized, JLIS 

automatically publishes the schedule, notifies the flying unit of the schedule, 

sends flight advisories to each origination or destination airfield affected, and 

even notifies the passengers' commanders. (Steedley, 1996) 

6. Rig changes. "Rigging" is the navy's term for the aircraft configuration. For 

example, a C-9 can either carry 90 passengers or 45 passengers plus 6,500 

pounds of cargo, depending on its rigging. JLIS will attempt to use the 
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current configuration for the aircraft, but if requirements dictate that the 

rigging be changed, the flying units are notified in time to effect the change. 

(Steedley, 1996) 

7. DSS tool with human interface. JLIS attempts to aggregate all the flights in 

the database possible, but the "man-in-the-loop" system allows the scheduler 

to make the decision. After scheduling the high-priority requests, it attempts 

to aggregate the lower-priority requests whenever possible, in order to support 

as many as possible. When it becomes necessary to "bump" passengers or 

cargo, JLIS offers up the lowest-priority requests for elimination. (Pellissier, 

1996) 

8. The decision support system simultaneously does two things to optimize the 

schedule: The Evaluation of Flight Schedule prompts the scheduler to move 

loads to different aircraft or to add legs/stops to a scheduled flight if it would 

free another airplane to fulfill other requests, and the Search for Solution of 

Unsatisfied Requests prompts the scheduler with additional changes to help 

fill other unsatisfied requests. (Pellissier, 1996) 

9. NALIS had been an automated system, but it made some bad assignments 

while following general rules and priorities. The users were not comfortable 

with that feature, and none of the services wanted an automatic system, so that 

innovation was discontinued in the subsequent system. (Pellissier, 1996) 
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10. Speed. According to NALO (Pellissier, 1996), the UNIX-based system has 

"real good" speed, responding to most inputs within five seconds, and solving 

most of their complex problems within about five minutes. 

11. Flexibility for carrier support. Much of the impetus for naval aviation airlift is 

to provide aircraft carrier support. Since that support is focused on the 

departures and arrivals of the ships, whenever the carrier has to change its 

schedule, even by one day, the airlift "house of cards" collapses and needs 

complete revision. JLIS' database structure is designed to reduce the impact 

of mission changes. (Pellissier, 1996) 

Weaknesses: 

1. Irrespective of potential future releases, the current version of JLIS is 

universally condemned by all users for its lack of user-friendly features. 

There is no Graphical User Interface, and no hot keys. It is a DOS-based 

program, with no mouse support, so it requires repeated "tabbing" to get to 

different fields. There is no point and click or drag and drop capability. 

(Noble, 1996) 

2. Due to its complexity, even those who developed JLIS are concerned that it 

has a very steep learning curve, often taking weeks to learn. They assert that, 

once users become more familiar with the program, they are less intimidated 

by it, but that it is still a complex program to use. (Pellissier, 1996) 

3. Another user (Noble, 1996) expressed reservations about the "mindset" 

required by the system: He said that it is written from an "aircraft driven" 
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perspective, instead of the customer-service "request oriented" approach that 

the Air Mobility Command uses. He also found that due to the accounting 

system in Oracle, they cannot simply delete a record, as they would like to do 

with a request if it is canceled. 

Summary 

After considering several of the scheduling programs available today, the reader 

can see that each program has its strengths and weaknesses. Andromeda is praised for its 

user friendliness and its extensive database designed to simplify scheduling and mission 

management. IT AS is useful for its mobility and for its ability to consider the theater 

airlift cargo mission. SAMMS is a useful, very specialized program for the presidential 

airlift mission. Its users appreciate its customized reports for schedule coordination and 

mission tracking. JLIS is the most elaborate and complicated system considered, with its 

powerful database and automatic database entry capability, but it is an extremely complex 

program to learn. 

The next chapter discusses in detail how to evaluate the effectiveness and 

appropriateness of the heuristic contained within the primary program of interest: 

DAKOTA. 
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IV. METHODOLOGY AND TEST PLAN 

The preceding chapter introduced several passenger airlift scheduling programs; 

Chapter II reviewed the current literature and the various authors' views on evaluating 

models in general, or on evaluating heuristics and algorithms specifically. This chapter 

builds on these thoughts and ideas to develop a methodology which one can use to 

evaluate a deterministic passenger airlift scheduling heuristic, using DAKOTA as a case 

study. 

First, the user must determine the objective of the heuristic. This may sound 

fairly straightforward, but there are a number of aspects to the problem. What exactly is 

the objective that the "customer" wishes to achieve: 

1. Is the intent to minimize the amount of flight time required to support the requests? 

Ostensibly, yes. Saving flight time translates into saving money, which is clearly 

of interest. 

On the other hand, currently USAFE is not under pressure to save flight time. 

They are authorized enough time to meet their mission of providing Distinguished Visitor 

(DV) airlift support. In fact, they had extra flight time remaining at the end of Fiscal 

Year 1995. (Maher, 1996) 

2. Is the intent to reduce the number of crews required to perform the mission? 

For the short run, yes. USAFE faces a crew shortage with the impending summer 

rotation cycle for their personnel. In the long run, the trend of force structuring in Europe 
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(and throughout the Department of Defense) has been toward CONUS basing and 

downsizing. Finally, the pilot shortage promises to be an issue which will once again 

come to the fore. Reductions in the number of crews required could become a potential 

concern. 

There are limits, of course, in the application of any solutions obtained. The Air 

Force has prided itself on its quality of life and respect for families. A solution which 

severely limits the amount of time crews spend at their home bases and with their 

families may cause long-term problems. Conversely, a solution which emphasizes "Out 

and Backs" would be supportive of the Air Force's quality of life goals. 

3. Is the system needed to reduce the number of aircraft required? 

In recent years, USAFE has restructured its OS A fleet. All of USAFE-assigned 

OS A helicopters, C-12s and C-135s have been reassigned, as has one of the C-20s. 

Smaller, more cost-efficient C-21s have been gained. Undoubtedly, the restructuring is 

not complete; future reductions may yet occur. 

4. Is the objective to reduce the number of time window violations? 

This is one of the options available under the DAKOTA scheduling system. 

Obviously, for DV support, on-time pickups and deliveries are a concern. 

Ultimately, with a given set of missions available to fulfill a set of requests with time 

constraints, there will be a limited number of feasible solutions (if any). 

The nature of the problem then becomes one of choosing whether it is more 

important to: 1) serve a greater number of requests, or 2) meet the time constraints of a 
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fewer number of requests. Lacking some automated or knowledge-based system of 

making those decisions, the decision is made by the scheduler. 

For DV scheduling, the determination is made on the basis of the priorities (often 

rank) of the personnel involved. For the 89th Wing's presidential support, for instance, 

support of the primary customer is the only imperative; supporting other requests is 

usually not even considered. 

5. What is the objective of OSA? 

Ironically, one of the express objectives of OSA has nothing directly to do with 

furnishing support for DVs: Providing "seasoning" for inexperienced pilots (Petry, 

1996). Reductions in the amount of flight time would run contrary to this objective. 

Besides, if the crews are relatively inexperienced, they may benefit more from a series of 

shorter flights which originate and terminate at the home base than from a scheduling 

system which aggregates requests and requires them to fly to twelve different destinations 

in six different countries over a three day span. 

6. Is the objective to simplify the scheduling process in order to reduce the workload on 

the schedulers? 

Initially, that was the concern posed. However, extensive interviews with the 

schedulers themselves (Velasquez, Maher, Mustin, Noble, Burgess, Chaffin, Goetz, 

Manney, 1996), especially those overseas, reveals that assigning requests to missions is a 

minor part of their duties; a major part of their task is to arrange the coordination between 

different units, different bases, and often different nations (diplomatic clearances) for the 

flights. Generally, they would be interested in a scheduling system not so much for its 
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ability to provide support for a greater number of requests with limited resources, but 

rather for its ability to reduce their workload. From their perspective, the primary 

concern for a system would be its flexibility, its user-friendliness, and its simplicity to 

learn (including the extent of its documentation). Their secondary concern would be how 

well it eases the manual tasks required. An example of this might be automating much of 

the coordination process between different agencies. 

7. Is the cost of the new system the main concern? 

Obviously not, since there will be costs associated with implementing any new 

system, but any system under consideration must be shown to be cost-effective. 

8. Do they need it? Or want it? 

These may be the key questions when considering the objective of the proposed 

scheduling system. Who proposed the development of the new system? In the case of 

DAKOTA, it was not the end users, the schedulers themselves, but rather Operations 

Analysis concerned for improving the efficiency of the process. Currently, the schedulers 

use a commercial system used by many Fortune 500 companies and other government 

agencies. While that system may not produce optimal schedules, measured in terms of 

reducing the number of flight hours required for the desired level of support, the 

schedulers are convinced that it meets their needs. (Lopez-Velasquez, 1996) They praise 

it for its efficiency and ease of use. Even //"DAKOTA could be shown to provide savings 

in terms of the flight time required, barring a mandate from a higher authority, the 

customers of the process (the schedulers themselves) would be hard to convince that it is 

a system they should embrace. 
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9. Is the intent to develop a scheduling system for future applications? 

This may turn out to be the key factor. For the current needs of the OS A 

scheduling mission in USAFE, the users (schedulers) are unconvinced of the need for the 

DAKOTA scheduling system. They believe they are able to manually schedule the 

missions adequately. However, if the regime of interest expands, the problem may 

change considerably: If the scheduler is concerned about efficiently scheduling up to 100 

AMC requests each day, instead of 6 or 7 for USAFE, then the scope of the problem 

changes drastically, to the point where a human scheduler may be unable to determine an 

optimal solution manually. Likewise, if the scheduler is tasked with efficiently 

scheduling all of the theater (cargo) airlift for the USAFE theater, it is doubtful that 

manual scheduling can produce an optimal schedule. 

In summary, the purpose of developing or implementing an automated scheduling 

system is not clear. Objectives can range from reducing flight time required, to reducing 

the number of minor constraint violations, to reducing workload on the schedulers 

themselves. The decision ultimately will rest with the OS A mission's operational 

commander. 
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After Consulting with HQ USAFE/DON and HQ USAFE/AOS/AOOMS 

(Wilkinson, 1995; Lopez-Velasquez, 1996) to determine what USAFE's objectives for an 

automated scheduling system are, the objectives are classified into three general areas: 

1. Solution Quality. Flight time, number of aircraft or crews required, number 

of soft time window violations, and number of infeasible solutions. 

2. Speed or Effort. Scheduler workload and number of iterations. 

3. Robustness. Brittleness and elasticity. 

These three areas are discussed in the section which follows, and then a plan for testing 

DAKOTA to determine how well it performs on those objectives is introduced. 

1. Solution Quality—identifies higher-quality solutions than other approaches: 

Since the US AFE schedulers are content with the system currently in use, it 

would seem the greatest justification for changing to a new scheduling system would be 

if it provided "higher quality" solutions than the current solution technique. 

Flight Time. The most obvious test of solution quality is a measure of the flight 

time required to support a given number of requests. Alternatively, the number of 

requests able to be scheduled onto a given mission would be another measure of quality. 

Walker attempted to make historical comparisons with past USAFE schedules 

using real world data. Though he did not have access to historical requests, he did use 

historical schedules for testing. From them he fabricated "fictional" requests upon which 

to test, varying the time windows, but a more realistic test would be to use the actual 

requests (see Appendix D). 
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Number of Crews/Aircraft Required. If the missions are defined first, and then 

the requests are scheduled onto those missions, DAKOTA will attempt to schedule as 

many of the requests as possible, while minimizing the flight time needed to accomplish 

them. On the other hand, the scheduler could start by defining the requests in DAKOTA, 

and then adding missions incrementally, rescheduling after each mission is added. Any 

requests which are insupportable by the current number of missions will be flagged in red 

as unscheduled. The scheduler can continue adding missions until all requests are 

scheduled. 

Number of Soft Time Window Violations. Another useful measure of solution 

quality would be the number of times the heuristic violates the soft time window 

constraints. DAKOTA can generate multiple candidate solutions, allowing the user to 

select the most favorable one. An additional useful feature of the program is its "stop 

light" color coding scheme; soft time window violations are flagged in yellow, advising 

the operator of the violation and allowing them to contact the passenger to confirm the 

acceptability of the violation, or to propose alternate travel arrangements. The difficulty 

with this measure is that during manual scheduling the scheduler follows a similar 

process, so during the testing process the evaluator must make sure to use the original 

travel requests, not the modified requests after scheduling. 

Number of Infeasible Solutions. Again, DAKOTA'S coloring scheme will signal 

an infeasible solution in red. For a given problem set, the number of legs in the solution 

which cannot feasibly be flown can be compared to the alternative's solution. This is 
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simply a variant of the solution quality measurement described earlier, counting the 

number of legs supported by a given mission. 

2. Speed or Effort—produces high-quality solutions more quickly than other 

approaches: 

Number of Iterations to Reach Feasibility. The test above proposed noting legs 

with violations, contacting the passengers to confirm the acceptability of alternative travel 

arrangements, and then running the heuristic again. The number of iterations required 

would be a useful measure of solution quality, especially against a competing heuristic 

such as ITAS which is designed to be an iterative process. 

The heuristic under consideration, in this case SchedGen, should be rated on how 

quickly it finds solutions. Below are several examples of the tests Walker used in his 

assessment: 

Computational Effort. Walker did considerable testing on this aspect of the 

SchedGen heuristic. One test he conducted was scheduling nine requests onto one 

mission, where one of the requests was insupportable (it violated the capacity 

constraints). By varying when the insupportable request was considered, he was able to 

measure the number of columns generated as a function of the placement ofthat leg. He 

determined that the earlier that leg was tried and rejected, the greater the computational 

savings. This provided his justification for his variable ordering strategy (see Chapter II) 

which encourages early consideration of those requests likely to be found difficult to 

schedule. (Walker, 1994:103-105) 
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He also calculated the size of the event list as a function of the number of legs 

with soft time window bounds. He found that over the range from six to 14 legs, the 

event list size showed nearly linear growth. He repeated the test again, using hard time 

bounds for the pickups with nearly identical results. (Walker, 1994:105-107) 

Despite the consistency of the event list size, Walker found that the computation 

times varied considerably. When considering the unconstrained requests (those without 

time windows), doubling the number of legs from six to 12 caused the CPU time to 

increase 166-fold. In the constrained case (requests which had time windows), the 

increase was 105-fold. (Walker, 1994:107) 

Walker described one scenario where his heuristic failed to converge to a solution 

within 45 minutes, and he recognized the need for the heuristic to give feedback on 

solution progress and to allow the user to "back out gracefully" from similar situations. 

(Walker, 1994:117-118) 

Next, Walker ranked the variable ordering strategies according to their CPU time. 

He found that the Earliest Pickup First (EPF) strategy was the fastest (averaging about 

40% faster than the slowest method), but that regardless of which ordering strategy was 

used, the flight times required to support the same number of legs were within five 

minutes of each other. (Walker, 1994:108-110) 

Scheduler Workload. As related in Chapter II, Ignizio asserts that computation 

times should be reported not just in terms of CPU time, but total time as well. Walker 

makes no effort to explain some measure of the total time required, from the pre- 

processing, to the post-processing, or even to include the user's input and output time. If 
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the algorithm must be run very frequently, or if it must be run iteratively to improve 

solutions, CPU time becomes significant; for a scheduling program which might be run 

weekly, or at most once or twice a day, even several minutes of processing time may not 

be significant to the user. A better measure would obviously be the user time required to 

get a workable solution. This should involve the amount of time required to run the 

program, to input the data (passengers, requests, missions and aircraft), and to output the 

solution in a format useful to the scheduler (for instance, TPFDD or ATO formats). 

This author's experiences showed that the user time can become uncomfortably 

long. Testing was performed on a limited sample during January through March 1996 on 

a Sun-10, operating under Solaris 2.3. Though it should not need to be accomplished 

very often, starting the database took approximately 15 minutes. The map function was 

not painfully slow, even though it was fairly graphically intensive. One of the slowest 

functions was in entering the data: each time the database had to be accessed there was a 

noticeable delay. In many of the windows, the user must then use the mouse to move 

from field to field, necessitating moving frequently between keyboard and mouse. 

3. Robustness—sensitivity to differences in problem characteristics, data quality, 

and tuning parameters. 

According to Rardin and Lin (Rardin and Lin, 1982:13), robustness can be 

established by determining if the solution times and accuracies from proposed test 

problems are comparable to those from real data. Solving smaller historical 

problems can help establish the face validity for the heuristic; solving larger 

problems will lend credibility to the model's robustness. 
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Brittleness. Brittleness is a measure of vulnerability to errors or even small 

changes in the schedule. Two good examples of a brittle schedule is one which is so 

"tight" that it cannot tolerate any delays in a mission, or one which fails badly when there 

is a mission cancellation. Walker demonstrated DAKOTA'S robustness by performing 

two experiments: He "unscheduled" an historical schedule and applied his heuristic to 

the same set of missions and requests. His resultant schedule reduced the resources 

required by two aircraft and nine flight hours (13%). Then he successfully unscheduled 

and rescheduled a mission already in progress as a simulation of a mission failure, 

demonstrating the responsiveness of his algorithm. (Walker, 1994:122-125) 

Elasticity. We saw earlier that computational effort increases when the 

time windows are less restrictive. Elasticity is a measure of how minor changes in 

the time windows affects solution quality. What is the impact of changing a hard 

time to a soft time, or vice versa? What happens when the acceptable arrival time 

window increases in size? 

Summary 

An outline of a specific plan for testing DAKOTA is given in Appendix E. 

The test plan is based upon comparing the system's performance to a manual 

schedule. The measures of merit tested are: 

1. Solution Quality. Flight time, number of aircraft or crews required, number 

of soft time window violations, and number of infeasible solutions. 

2. Speed or Effort. Scheduler workload and number of iterations. 

3. Robustness. Brittleness and elasticity. 
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The three statistical tests used in the comparison are: 

1. Wilcoxon Signed Rank Test. 

2. McNemar Test for Significance of Changes. 

3. Sign Test. 

As the DAKOTA system could not be made fully operational at AFIT, we were unable to 

execute any portion of the test plan outline in Appendix E or the alternative tests that 

were to be conducted. Appendices B and C list the problems encountered and actions 

taken attempting to make DAKOTA operational on AFIT's system. 

Our inability to make DAKOTA operational does not, however, reduce the need 

to consider optimization in mission scheduling within the Air Force. 
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V. CONCLUSIONS AND RECOMMENDATIONS 

Conclusions 

Fiscal constraints will continue to provide pressure for more efficient use of 

resources, including Operational Support Airlift. Any means of reducing costs are likely 

to be eagerly accepted, particularly if they do not negatively impact accomplishment of 

the mission. A more efficient computer scheduling program which promises to save 

flight time (and hence, dollars) is one good example. However, since the implementation 

of a new program itself costs money, it is important that an effort be made to verify the 

claims of potential savings before rushing headlong into a new system. 

The DAKOTA scheduling system has been proposed for use in USAFE's 

Operational Support Airlift scheduling. This thesis has examined the OSA scheduling 

topic and concluded that exact methods are intractable due to problem size. 

Consequently, heuristic methods must be considered. However, the issue then arises of 

how we determine the effectiveness of a heuristic, or even, how we decide what to use for 

the standards by which we judge the heuristic. Is an exact solution important if it takes 

too long to find? Is a timely, but "good", solution more important? What is meant by 

"good"? 

This thesis contemplated the concepts of validation, verification and accreditation 

as they apply to heuristic methods. It examined the measures of performance which 

should be considered when evaluating a heuristic or an algorithm, and the statistical tests 
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which might be used to distinguish how well it performs. Finally, it provided a detailed 

test plan for a heuristic, using DAKOTA as a case study. 

Recommendations for Future Research 

Several areas remain open for potential future research: 

1. Implementation of the test plan on the DAKOTA program may yield 

promising results. 

2. Installing the DAKOTA program needs to be simplified. Either the system 

requirements for the program to run properly need to be defined, or a 

thorough, well-documented installation routine needs to be developed. A 

listing of the program's files and directories and their purposes would be 

helpful, as would a list of other required files which are not included with the 

program. 

3. DAKOTA could be modeled to respect any of a number of other constraints, 

from crew duty limitations, to airfield capacity and time limitations, to aircraft 

performance data, to cargo theater airlift models considerations. 

4. A "portable" optimization routine could be identified for use within any of the 

multiple existing scheduling systems. Incorporating that optimization routine 

into other scheduling systems could improve scheduling efficiencies, and 

potentially enhance standardization between systems. 

5. Currently, the human scheduler must define the timeframe for missions for the 

DAKOTA program. Since the specifics of the mission definitions affects the 
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feasibility of supporting requests, an enhancement to the program which 

"suggests" to the user efficient mission definitions would be constructive. 

6. Since most heuristics have multiple objectives, a decision analysis framework 

could prove useful in determining appropriate weights for each of the 

objectives and in judging the effectiveness of the heuristic. 

7. To assist in testing and comparing scheduling system heuristics, a documented 

data set taken from real world airlift scheduling applications should be 

developed for use by the Air Force and Department of Defense. 

8. The elasticity feature described in the test plan phase might prove useful: It 

can be used to determine how much flight time (and money) could be saved 

by encouraging the passengers to be more flexible in their requested travel 

times. If each passenger can be induced to provide a two (or even three) hour 

time window for both departure and arrival, how much flight time would be 

saved? 

9. Clearly, for small problems, even the manually-produced schedule may be an 

optimal solution. Further study should be made to determine at what point the 

manually-produced schedule varies materially from an optimal solution. That 

is, for what size problem does an automated optimization routine become 

necessary? 

10. Finally, and probably most importantly, if DAKOTA can be shown to save 

flight time, an estimate of the amount of flight time (and money) which would 
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be saved over a year could provide a very convincing argument for adopting 

an automated optimizing scheduling system. 

Heuristics and algorithms, the engines of optimization, have a key place in 

today's Air Force. With restrictive budgetary limitations, the need to do more with less 

will increase. Developing flexible, user-friendly systems and training personnel to use 

them will be essential to meeting the Air Force's mission, both today and in the future. 

93 



Appendices 
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Appendix A: Walker's Tests of DAKOTA 

In his dissertation, Walker (1994) performed a number of tests on his algorithm 

and program. Several of his tests, and some of his conclusions, are summarized below: 

1. Real World Data. He did not have access to historical requests, but he did use 

historical schedules. From them he fabricated "fictional" requests upon which to test, 

varying the time windows. He found that wider time windows provide more 

flexibility and more combinations of schedules, (p. 101) 

2. He solved test problems from DARP and CVRP literature to test his algorithm's 

ability to generalize, (p. 101) 

3. He tested on randomly generated problems, (p.98) 

4. He solved a relaxed LP problem to determine an upper bound, and compared his 

heuristic to it. He said it usually reached the same upper bound. In some cases where 

he did not find the upper bound, he determined that the bound was not feasibly 

attainable, (p. 102) 

5. He compared constrained (hard times) and unconstrained (soft times) problems, and 

found unconstrained take up to about 8 times more CPU time. (p. 107) 

6. He found that Early Pickup First (EPF) time ordering generally dominated, but for 

schedules supporting the same number of legs the flight times were within 5 minutes 

regardless of the ordering strategy, (p.108-110) 
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7. He found that clusters of up to 10 requests helped increase the number of requests 

supported, (p. 113) 

8. Some of his tests failed to reach the upper bound, (p. 116) 

9. Some tests failed to converge to a solution within 45 minutes, so he concluded some 

indication of solution progress and method of aborting the solution would be useful. 

(P-117) 

10. He suggests that schedulers must use realistic time windows, since that will help both 

the traveler and the algorithm, (p. 119) 

11. He concluded that the Air Force's concept of a "mission" to package an aircraft's 

itinerary over a period of time may need reexamination. He determined that "it is 

important to give the scheduler the ability to negotiate the operational bounds for the 

selected missions within the constraints of the fleet schedule structure." (p. 120) 

12. He recommends longer missions be broken into smaller missions based on the 

solution, since most long missions traverse the home base anyway, in order to satisfy 

crew duty constraints, (p. 121) 

13. One comparison used 3 aircraft and 30 hours 38 minutes, versus the expert-produced 

5 aircraft and 34 hours. The number of aircraft required was determined by 

overlapping missions, (p. 122) 

14. He tested an existing schedule by unscheduling all requests, and rescheduling them as 

a batch. His solution required 2 fewer aircraft and a 9 hour (13%) reduction in 

scheduled flight time. (p. 123) 
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15. He found he could use it to effectively reschedule requests following a simulated 

schedule failure (i.e. aircraft maintenance abort). He used "dummy" requests to force 

the program to retain the flight legs which had already occurred (before the aircraft 

abort), and rescheduled the remainder of the requests onto the remaining missions. 

(p.125) 

16. When he applied the algorithm to a DARP, he found that computational requirements 

grew rapidly. In attempting to minimize the number of soft time window violations 

(which are not of primary importance, or else they would be hard time windows), we 

sacrifice solution quality in terms of minimum tour length, (p. 125-127) 

17. The CVRP has no time windows; since SchedGen relies on exploiting the time 

windows, he found that the algorithm was computationally inefficient, (p. 125-131) 

18. Walker recommended using published test sets to test DAKOTA. He used the Eil22 

CVRP test set, making necessary modifications to his heuristic in order to solve the 

set. He reported a solution tour length of 461, but did not give an indication of the 

solutions obtained by other existing heuristics. (128-131) 
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Appendix B: Difficulties with DAKOTA 

This appendix is divided into two areas. The first section gives a chronology of 

the general problem areas we encountered in trying to install and use the DAKOTA 

program. The second section gives specific details of the problems or errors experienced 

trying to use DAKOTA to perform any scheduling. 

Chronology of Installation Problems 

Prior to installing DAKOTA for use on AFIT's computers, I contacted Doug 

Schesvol at North Dakota State University. He compiled the program into a single "tar" 

file for us to download. Initially when we downloaded (by FTP) the tar file containing 

the program elements, we found that the database was not included. We contacted 

Schesvol, who compiled the remainder of the necessary files for our installation. Since 

DAKOTA was designed to run under Solaris, we installed it on a Sun-10 with 64 MB of 

memory, running Solaris 2.3. 

The program came with an extensive database which had been used at NDSU. It 

included a number of aircraft, missions, and requests already scheduled. The schedules 

were for fictional flights in October 1996. Since USAFE has fewer OSA aircraft now 

than when NDSU developed their database, I attempted to delete several aircraft tail 

numbers and types from the database, but I was unable to do so. The program correctly 

informed me that I needed to delete aircraft tail numbers before I could delete an aircraft 

type (e.g., C-135). When I tried to delete the aircraft by tail number, the program 

correctly advised me of the necessity to delete any missions assigned to that aircraft 
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before I could delete it. When I tried to delete the missions, the program again correctly 

reminded me that I needed to unschedule any requests which had been scheduled onto 

those missions. These warnings are all "normal" and I anticipated them. Unfortunately, 

after I unscheduled all of the requests, deselected the requests, and removed the missions 

from the database, I was still unable to delete some of the aircraft tail numbers, and all of 

the aircraft types. 

I described these problems to Schesvol, and he could not explain the problems. 

He created another database, this time containing the same aircraft, but without the 

previously scheduled requests included. This time I was able to successfully delete all 

the tail numbers and aircraft types which I did not require. 

Unfortunately, I noticed another database problem. When an arrival time at a 

destination is entered, the DAKOTA program is designed to automatically calculate the 

required departure time from the origin in order to make the required arrival time. The 

departure time includes an "earliest departure" time and a "latest departure" time, based 

on the speeds of the slowest and fastest aircraft in the database, respectively. After I 

deleted the H-l helicopter from the database, DAKOTA apparently still calculated the 

earliest departure times based on the airspeed of an H-l, even though that aircraft no 

longer existed in the database. 

Next, I attempted to define missions. I was able to define a few missions, but 

when I tried to define a mission for some tail numbers for some time periods, I got a 

warning message stating "Unable to allocate requested aircraft for given time interval." 

After explaining the problem to Schesvol, he made a correction to the program allowing 
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the database server to relax the time lock on the aircraft. His fix seems to have worked; I 

was unable to duplicate that particular problem again. 

After installing his correction, I again attempted to define a few token missions 

and requests and to schedule them to determine if the program was working correctly. It 

successfully accepted the mission and request definitions, and successfully scheduled 

them. Since it appeared that the program was working appropriately, I entered several 

more missions and request definitions, but I got a number of other errors. I was unable to 

successfully schedule any other requests, and I was unable to save the current solution to 

the database. When I described this problem to Schesvol, he asked me to FTP our 

database to him for his examination. He reported "I was not able to pull up any requests, 

missions, passengers, etc. from the database that you ftp'ed. However, I was able to 

dump the data to ASCII files using a database utility, so it looks like there was data in the 

database. I was able to reload your data and things seem to work now." When I then 

FTPed the database back from him and installed it, it seemed to work perfectly for a short 

time, but then failed again. 

Specific Problem Areas 

These first three problems were discovered before installing Schesvol's update. I have 

not seen them recur since the update was installed, but I was not able to get enough 

experience to determine for certain that the problems had been fixed: 

1.   Several times I tried to define a mission (ex: l/Feb/95 0600-2300 for tail number 

40087) but I got an error "Unable to allocate requested aircraft for the given time 
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interval." There were no other missions in the database for that aircraft. I tried an 

alternate tail number and it worked. 

2. With that mission defined, I tried to schedule a request for a "short" round-trip flight 

(about 4 hours, including layover) to arrive at 1500 (i.e. flight should be about 1100- 

1500). I got a warning that "Scheduled request leg does not fit on any selected 

missions." I tried to "force it" manually by adding legs to the mission, but when I 

tried to append a stop, I got an error "Must enter origination ICAO", but it would not 

let me. 

3. I defined a new mission. Then I tried to retrieve the mission, but I got a dialog box 

warning "Unable to obtain time lock." 

The next items are problems I have had since making the update: 

1. I could see a defined mission when I hit the "Next Page" button on the Schedule 

page, but when I tried to retrieve one, it was not listed in the database. That 

happened whether or not I had saved the database. 

2. I deleted all the requests, then missions, then tail numbers, and then aircraft type for 

C-12, C-135, and H-l, but for a "short leg" of about 1-1/2 hours for the remaining 

C-20s, C-21s, or T-43s, the program automatically figured the time window to take 

up to about four hours. 

3. On several occasions I witnessed DAKOTA scheduling missions which seemed to 

defy attempting to minimize the flight time and distance. One example follows: 

a)    I considered two requests: The first was routed from Aviano AB Italy, to Cairo 

Egypt, to Tel Aviv Israel. The second was for the next day, from Sigonella Italy 
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(Sicily), to Aviano Italy, and then Ramstein AB Germany. I defined a mission 

which covered the two-day span of both requests, expecting that the Decision 

Support System (DSS) in DAKOTA would schedule both requests onto that one 

mission, scheduling the aircraft to remain overnight in Israel. Instead, it routed 

that aircraft to continue on to Warsaw Poland, and scheduled another aircraft the 

next day to deadhead to Sicily, and then on to Aviano and back to Ramstein. 

b)   There were no other requests or missions which would require that circuitous 

routing to minimize flight time. 

4. I could not save a solution to the database. I got a message stating "Mission must 

have at least one leg. Solution not saved." This message was after I had already 

scheduled several requests onto the mission. I was able to save solution to a file. 

5. On numerous occasions, the DSS would declare that a request would not fit onto 

"any selected mission", even though there were missions which clearly could support 

the request. 

6. On some occasions, especially on missions which span multiple days, it left the first 

origin blank, instead of starting at Ramstein. The origin should have been the home 

base of Ramstein. For example: 

        Dest  1 

Dest 1  Dest 2 

Dest 2     

7. One request was for four foreign national officers to fly from Warsaw, to Ramstein, 

to Spangdahlem AB Germany, and back to Warsaw. Instead of dedicating an aircraft 
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and mission to support this, the DSS scheduled two of the three legs on one mission, 

and used another mission to go from Ramstein, to Sigonella, to Aviano, to 

Spangdahlem, and to Ramstein. One problem is that the routing would require the 

contingent to fly the whole route just to travel the half hour distance from Ramstein 

to Spangdahlem. The second problem is that if the passengers did fly the long way 

to get to Spangdahlem, it would prevent them from simultaneously flying on the leg 

from Warsaw to Ramstein. 

8. On one test, I entered 29 requests (covering 8 days) and three missions (covering the 

first two days) and ran the automated Decision Support System (DSS). It scheduled 

all 29 requests, with several violations, on the 3 missions spanning 1-8 Feb—in 

violation of the missions' definitions. I noted some Soft Time Window violations 

(which are acceptable), and several Hard Time Window violations. I did not notice 

any endurance, capacity, or turntime violations. 

a)    Again, the remarkable thing was: A mission defined only for 1 Feb was tasked 

to support requests for the next eight days. Additionally, there was another 

mission defined for the next day (2 Feb) which was not scheduled to fly to 

support any requests. When I tried to manually schedule the 2 Feb request onto 

the 2 Feb mission, / could not. Instead, I got a message that it would not "fit on 

any selected mission." 

9. I could not modify a request which had been scheduled (or unscheduled) but not yet 

saved to database. I wanted to change the 1200 departure to a hard time, but could 

not, not in Schedule window with Definition/Select Request menu, and not in 
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Requests window. In each case, I got a "Request not found in database" message. 

So I deselected the request and added a brand new request, this time with a hard 

departure time of 1200. When I tried to manually schedule that request, I got a 

"Selected request leg does not fit on any selected missions" message. In order to 

schedule for those requests, I had to: 1) Manually enter the mission legs. 2) Modify 

those two legs to force it to depart and arrive at the desired request times. 

Ultimately, it worked, but it resulted in the next request's takeoff time (1225) being a 

hard violation. If I modified that mission, then the next leg had a Hard Time 

Window violation, even though that was not a defined request—it was a leg 

DAKOTA inserted for a fuel stop on the way to another stop in Turkey. The leg in 

Turkey was not even requested until the next day (2 Feb). Besides, that request was 

for a courier from Ramstein to Aviano, etc., with the courier on board from Ramstein 

to Aviano and on subsequent legs. If it scheduled the previous day's mission to 

continue on that day, then it would prohibit fulfilling the courier's request, which was 

to fly the mission on a single day. 

a) I had unscheduled the request from all missions, but I still could not modify it. I 

had to deselect (i.e. delete) it entirely, and redefine a new one to make a minor 

change to the first. 

b) The problem was, it considered an automatically-defined fuel stop on the way to 

Turkey a Hard Time Window violation—even though that request was not 

supposed to depart for Turkey until the next day! The Courier was not going to 
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leave Ramstein until the next day. There were no requests which drove it to fly 

to Italy and on to Turkey that day. 

10. In order to schedule one request, I added a new mission on 2 Feb (0600-2000). 

When I attempted to manually schedule that request, I got a "Selected request leg 

does not fit on any selected missions" warning. I defined a new mission tail number, 

with same result. I deselected that mission, and added another new one, with the 

same result, still unable to schedule the request. A consequence of having a mission 

with no legs on it is that I was unable to save the schedule to a file, but not to the 

database. 

a)    I tried to define the legs manually but could not. I tried to use the DSS to define 

the legs, but it ignored that mission completely, scheduling the requests onto the 

previous day's mission anyway. At that point, I was out of luck. I could not 

save to the database until I defined a leg for that mission; I could not define the 

legs manually; I could not define any legs on that mission with the DSS, since it 

used an expired mission (from the day before) instead. Therefore, I could not 

save to the database. 

11. Since I found I was unable to add a new mission when the requests were already 

defined, I tried deleting all missions and requests, starting from scratch, this time 

adding missions first. The problem with this is that I may not know if an additional 

mission is required until I have tried to schedule requests and found that they will not 

fit on existing missions. After I entered a number of requests, I found I was unable 

to define any additional missions to support them. 
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12. After that, I gave up and reloaded a solution saved to a file. I tried to define a 

mission for 2 Feb, got an "Unable to allocate requested aircraft for the given time 

interval" message for two different tail numbers. Both of these aircraft were only 

defined on a mission from 0600 to 2000 on 1 Feb, so they should be available for the 

new mission definition anytime the following day. 

13. Once again, I tried to run the DSS, and once again it scheduled all the requests for 

eight days onto two 14-hour missions. Once again, I tried to manually schedule, and 

once again, it said "Selected request leg does not fit on any selected missions." I 

could not define the legs either by the DSS or manually. 

14. I then tried: 1) Defining the mission twice more, with different tail numbers, and 

rescheduling without success, and 2) Defining another new mission, with yet another 

tail number, for a three-day period (1-3 Feb) spanning the single day (2 Feb) for 

which I was trying to schedule the request. Once again, it declared "Selected request 

leg does not fit on any selected missions." Again, I could not define the legs either 

by the DSS or manually. 

15. The only other option was to define each leg on that mission manually. I attempted 

to "append" stops to that leg, but it would not allow that, giving me a "Must enter 

origination ICAO" message. It allowed me to enter origination date and time, but 

not ICAO; I could not make the ICAO field active by clicking in it. Thus, it would 

not allow me to define individual mission legs. 

16. On numerous occasions the database server would fail, requiring me to restart the 

server again, a 15 minute process. Most times I could not determine what actions 
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may have caused the server to fail. One time which I could determine was when I 

accidentally entered an origin ICAO as "EDUL " (with a space), which caused a 

"Segmentation Fault" and closed the Requests screen. When I tried to run Requests 

again, I got an "Unable to connect to Database Server" error. Any unsaved work 

would have been lost. 

17. On other occasions, the screen and program simply locked up, requiring the terminal 

to be rebooted. 
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Appendix C: Program General Comments and Suggestions 

Anthony Schooler, AFIT/SC (Computer Section), gave me a great deal of 

assistance in working with and installing DAKOTA. He had several comments about the 

program: 

1. He felt that a different database server might work better. He speculated that the 

reason for the crashes or locks might be from conflicts between the database server 

and the display system. He felt that UNIX database libraries like "dbm" might work 

reliably. 

2. He did like the index and table file system used by the database. He felt it would be a 

faster system than trying to load the whole database into memory when needed. 

3. Since it uses a single database server, he was concerned that when the server locked 

up it could have damaged the database structure or index files. He thought a database 

system which could rebuild the index files from scratch might eliminate some 

problems. 

4. He suggested that different users should have different working areas for saving their 

solutions, to prevent the potential for overwriting each other's solutions. 

5. He noted that many of the directories were "hard coded" in the scripts, requiring the 

directories to be redesignated in the script layout. 

6. Originally AFIT's NFS file system caused conflicts with permissions. We tried 

different combinations of permissions and groups, even ultimately making my 
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personal account the owner of all files, but still had the database conflict problems 

described above. 

7. He speculated that some of the operating problems may have come from a mismatch 

of the libraries in the operating systems. Apparently NDSU uses Solaris 3.5, 

compared to AFIT's Solaris 2.3, but Dr Nygard wrote in electronic mail on 18 July 

1995, "Any SUN running Solaris 2.X should run it seamlessly." 

8. He thought that users should be supplied with the tools to access or fix the database. 

One example is the utility which Schesvol used to export the database to an ASCII 

file. 

9. Finally, when I told him that Schesvol had referred to this version of DAKOTA as a 

"beta" version, Schooler thought that was an overstatement of its status, based on the 

problems we had encountered. 

I would like to offer the following suggestions for improving the program in future 

revisions: 

1. Currently, the program requires a set of requests be assigned to previously defined 

missions, instead of the other way around. A conceptual change to the approach 

would be helpful to a scheduler in minimizing the number of missions (i.e., aircraft 

and crews) required. If the program prompts for a new mission to be defined, or even 

gives suggestions for a mission start and stop time which would match the greatest 

number of requests, it would be helpful to the scheduler. 

2. The program needs to account for crew duty day restrictions. Currently, it allows the 

scheduler to define a mission for any period length, without consideration to the 
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maximum duty day length. This is useful for defining a "Remain Overnight" mission 

(e.g., leave on Monday, return on Thursday), but it still needs to consider that the 

crew can only fly for a maximum number of consecutive hours within that period 

without a break long enough to allow for crew rest. 

3. The "hyperhelp" file gives some useful information, but not that much more than is 

already included in the tutorial and manual. It is a huge file, over 48 MB, since it is 

mostly graphical. Even the "text" is saved as a graphic file, so it is very slow. It took 

me around a minute to jump to each hyperlinked page. 

4. The program comes with a main menu system, but it is not yet operable. This would 

be a useful means of accessing the numerous different screens DAKOTA requires. 

5. Like Schooler, I would recommend that the utilities used at NDSU be both available 

and documented for users at different locations. 

6. Many of the times the travelers are not particular about their itineraries. For example, 

many of the passengers in USAFE are couriers who might need to specify several 

destinations (in order) that they need to visit on a certain day, but they may not be 

concerned about specific departure or arrival times. Currently, DAKOTA requires the 

scheduler to define time windows for each departure and arrival. An "As Required" 

option for the time windows might increase the computational complexity, but it 

would allow the scheduler greater flexibility, and would likely result in more efficient 

schedules in terms of flight time and distance. 
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7. Similarly, if it is hoped that this program be extended to scheduling for theater airlift, 

it will need to account for the cargo mission. For cargo flights, particular time 

windows might not be as important as loading order. 

8. DAKOTA needs some quick or easy way to delete data (aircraft, passengers, requests, 

etc.). 

9. It also needs some effective means of producing an output for the scheduler. A print 

option was recently installed on a menu, but the scheduler ought to have some means 

of customizing output reports. 

10. DAKOTA needs to account for some aircraft having different home bases. That 

means not simply defining a new default home base, but defining a different home 

base^ör each aircraft. 

11. In order to aid in evaluating how efficient a schedule is, DAKOTA should be 

modified to provide an output of the amount of flight time required by a schedule. 

12. When the scheduler manually changes the departure time for a scheduled leg, he then 

has to manually change the subsequent arrival time too. It would be convenient if it 

would automatically update the arrival time based on the estimated enroute time, 

while still allowing the scheduler to override that time if necessary. 
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Appendix D: Historical USAFE Data 

Table 5 
USAFE OSA REQUESTS 

February 1995 

Arr Date/Time Location Dep Date/Time #PAX 
Ramstein AB, GE (EDAR) 1/0745 3 

1/0830 Laarbruch AB, GE (EDUL) 1/1200 
1/1245 Ramstein AB, GE (EDAR) 

Rota, SP (LERT) 1/1300 6 
1/1600 Ramstein AB, GE (EDAR) 

Ramstein AB, GE (EDAR) 1/1300 7 
1/1500 Rota, SP (LERT) 

Aviano AB, IT (LIPA) 3/AR 1 
3/AR Capodichino, Naples, IT (LIRN) 

Ramstein AB, GE (EDAR) 2/AR Courier 
2/AR Akrotiri, Cypress (LCRA) 2/AR 
2/AR RAF Mildenhall, UK (EGUN) 

Ramstein AB, GE (EDAR) 3/0700 3 
3/AR Aviano AB, IT (LIPA) 3/AR 5 (+2) 

3/1700 Sigonella, IT (LICZ) 
Vilnius, Lith (UMWW) 4/AR 7 

4/AR Ramstein AB, GE (EDAR) 
Ramstein AB, GE (EDAR) 3/AR Courier 

3/AR RAF Mildenhall, UK (EGUN) 3/AR 
3/AR Capodichino, Naples, IT (LIRN) 3/AR 
3/AR Ramstein AB, GE (EDAR) 

Moron AB, SP (LEMO) 4/AR 7 
4/AR Ramstein AB, GE (EDAR) 

Aviano AB, IT (LIPA) 5/1615 3 
5/AR Ramstein AB, GE (EDAR) 

Aviano AB, IT (LIPA) 5/0400 6 
5/AR Cairo, EG (HECA) 5/1030 

5/1130 Ben Gurion, IS (LLBG) 
Warsaw, PO (EPWA) 6/0900 4     . 

6/1115   ■ Ramstein AB, GE (EDAR) 7/0830 
7/AR Spangdahlem AB, GE (EDAD) 7/1430 

7/1645 Warsaw, PO (EPWA) 
Sigonella, IT (LICZ) 6/1320 5(2) 

6/1500 Aviano AB, IT (LIPA) 6/AR 3 (-2) 
6/1750 Ramstein AB, GE (EDAR) 

Ramstein AB, GE (EDAR) 6/0700 6 
6/AR Diyarabkir, TU (LTCC) 6/1230 
6/AR Incirlik, TU (LTAG) 9/0800 
9/AR Ramstein AB, GE (EDAR) 
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Arr Date/Time Location Dep Date/Time #PAX 
Ramstein AB, GE (EDAR) 7/AR Courier 

7/AR RAF Alconbury, UK (EGWZ) 7/AR 
7/AR Wiesbaden, AB, GE (EDOU) 

Akrotiri, Cypress (LCRA) 7/AR Courier 
7/AR RAF Mildenhall, UK (EGUN) 

RAF Alconbury, UK (EGWZ) 8/1000 3 
8/AR Ramstein AB, GE (EDAR) 

Ramstein AB, GE (EDAR) 8/1030 6 
8/AR RAF Northolt, UK (EGWU) 

Ramstein AB, GE (EDAR) 8/AR 2 
8/AR RAF Alconbury, UK (EGWZ) 

RAF Mildenhall, UK (EGUN) 10/AR 2 
10/AR Ramstein AB, GE (EDAR) 

Capodichino, Naples, IT (LIRN) 8/0950 3 
8/1100 Gety 8/1600 
8/1635 Pisa, IT (LIRP) 9/1450 
9/1645 Capodichino, Naples, IT (LIRN) 

Ramstein AB, GE (EDAR) 8/0845 6 
8/0900 RAF Mildenhall, UK (EGUN) 
same RAF Alconbury, UK (EGWZ) 10/1130 6 
10/AR Ramstein AB, GE (EDAR) 

Ramstein AB, GE (EDAR) 9/AR 1 
9/AR Ankara, TU (LTAE) 10/AR 
10/AR Ramstein AB, GE (EDAR) 

Ramstein AB, GE (EDAR) 9/0700 2 
9/1120 Ankara, TU (LTAE) 9/1235 
9/1335 Balikesir, TU (LTBF) 9/1620 
9/1710 Ankara, TU (LTAE) 10/1600 
10/1750 Araxos AB, GR (LGRX) 10/1905 
10/AR Ramstein AB, GE (EDAR) 

Ramstein AB, GE (EDAR) 10/1655 3 
10/AR Bonn, GE 10/2300 
10/AR Ramstein AB, GE (EDAR) 

Ramstein AB, GE (EDAR) 10/AR Courier 
10/AR RAF Mildenhall, UK (EGUN) 10/AR 
10/AR Capodichino, Naples, IT (LIRN) 10/AR 
10/AR Zagreb, CR (LDZA) 10/AR 
10/AR Ramstein AB, GE (EDAR) 

Ramstein AB, GE (EDAR) 14/1600 6 
14/AR Stuttgart, GE (EDOC) 
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Arr Date/Time Location Dep Date/Time #PAX 
Ramstein AB, GE (EDAR) 9/07 5 

9/0800 Aviano AB, IT (LIPA) 9/1200 
9/1300 Capodichino, Naples, IT (LIRN) 9/1500 
9/1830 Incirlik, TU (LTAG) 10/0800 
10/1000 Cairo, EG (HECA) 10/1200 
10/1345 Soudabay 11/1345 
11/1700 Sigonella, IT (LICZ) 12/1030 
10/1430 Torrejon, SP (LETO) 12/1530 
12/1600 Rota, SP (LERT) 13/1200 
13/1530 Lajes AB, AZ (LPLA) 

Ramstein AB, GE (EDAR) 9/0700 1 
9/0830 Aviano AB, IT (LIPA) 

Vicenza AB, IT (LIPT) 13/0730 3 
13/0830 Capodichino, Naples, IT (LIRN) 13/1400 
13/AR Vicenza AB, IT (LIPT) 

Ramstein AB, GE (EDAR) 13/0700 6 
13/AR Tirana, Alb (LATI) 15/1600 
15/AR Ramstein AB, GE (EDAR) 

Aviano AB, IT (LIPA) 13/1350 2 
13/1455 Ramstein AB, GE (EDAR) 

Ramstein AB, GE (EDAR) 13/0800 2 
13/0810 RAF Mildenhall, UK (EGUN) 14/1115 
13/1325 Ramstein AB, GE (EDAR) 

Ramstein AB, GE (EDAR) 14/AR Courier 
14/AR Incirlik, TU (LTAG) 15/AR 
15/AR Ramstein AB, GE (EDAR) 

Aviano AB, IT (LIPA) 14/1500 4 
14/1915 Incirlik, TU (LTAG) 

Ramstein AB, GE (EDAR) 15/0830 6 
15/AR Decimomannu, IT (LEID) 16/1400 
16/AR Ramstein AB, GE (EDAR) 

Capodichino, Naples, IT (LIRN) 16/1500 2 
16/AR Villa Franca AB, IT (LIPX) 

Villa Franca AB, IT (LIPX) 16/1720 4 
16/AR Ramstein AB, GE (EDAR) 

Ramstein AB, GE (EDAR) 16/0750 4 
16/1030 Moron AB, SP (LEMO) 16/1400 
16/AR Ramstein AB, GE (EDAR) 

Ramstein AB, GE (EDAR) 17/0800 2 
17/AR Spangdahlem AB, GE (EDAD) 17/1900 
17/AR Ramstein AB, GE (EDAR) 

Ramstein AB, GE (EDAR) 17/AR Courier 
17/AR RAF Mildenhall, UK (EGUN) 17/AR 
17/AR Capodichino, Naples, IT (LIRN) 17/AR 
17/AR Zagreb, CR(LDZA) 17/AR 
17/AR Ramstein AB, GE (EDAR) 
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1 
Arr Date/Time Location DepDate/Time #PAX 

RAF Mildenhall, UK (EGUN) 17/1700 7 
17/AR Ramstein AB, GE (EDAR) 

Ramstein AB, GE (EDAR) 17/0820 7 
17/0830 RAF Alconbury, UK (EGWZ) 

Ramstein AB, GE (EDAR) 20/AR 6 
20/AR Warsaw, PO (EPWA) 20/AR 

20/1600 Ramstein AB, GE (EDAR) 24/1000 
24/1200 Warsaw, PO (EPWA) 

RAF Northolt, UK (EGWU) 20/1430 3 
20/1900 Incirlik, TU (LTAG) 21/1100 
21/1700 Riyadh, SA (OERY) 

Aviano AB, IT (LIPA) 21/1810 2 
21/1915 Ramstein AB, GE (EDAR) 

Capodichino, Naples, IT (URN) 16/1500 4 
16/1600 Villa Franca AB, IT (LIPX) 16/1715 
16/AR Ramstein AB, GE (EDAR) 21/1500 

21/1630 Villa Franca AB, IT (LIPX) 21/1745 
21/AR Capodichino, Naples, IT (LIRN) 

Ramstein AB, GE (EDAR) 21/AR 4 
21/AR Vilnius, Lith (UMWW) 

Vilnius, Lith (UMWW) 21/AR 6 
21/AR Ramstein AB, GE (EDAR) 

Capodichino, Naples, IT (LIRN) 21/AR 4 
21/1200 Stuttgart, GE (EDOC) 21/1800 
21/AR Capodichino, Naples, IT (LIRN) 

Ramstein AB, GE (EDAR) 28/AR Courier 
28/AR Akrotiri, Cypress (LCRA) 28/AR 
28/AR RAF Mildenhall, UK (EGUN) 

Stuttgart, GE (EDOC) 27/1255 5 
27/1445 Capodichino, Naples, IT (LIRN) 

Capodichino, Naples, IT (LIRN) 28/0545 2 
28/0655 Aviano AB, IT (LIPA) 2/1630 
2/1740 Capodichino, Naples, IT (LIRN) 

Ramstein AB, GE (EDAR) 27/AR 4    • 
27/AR Riga, Latvia (UMRR) 3/AR 
3/AR Ramstein AB, GE (EDAR) 

Bucharest, RO (LRBS) 27/AR 4 
27/1600 Ramstein AB, GE (EDAR) 3/1000 

3/AR Bucharest, RO (LRBS) 
Ramstein AB, GE (EDAR) 26/1400 7 

26/1530 Aviano AB, IT (LIPA) 27/1800 
27/1930 Ramstein AB, GE (EDAR) 

Tallinn, Estonia (ULTT) 24/1600 3 
24/AR Stuttgart, GE (EDOC) 
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Arr Date/Time Location Dep Date/Time .".',# PAX 

Ramstein AB, GE (EDAR) 23/1605 1 

23/1650 Chievres AB, BE (EBCV) 23/1905 
23/2000 Capodichino, Naples, IT (LIRN) 24/1100 
24/1300 Ramstein AB, GE (EDAR) 

Capodichino, Naples, IT (LIRN) 24/0700 6 
24/0750 Brindisi, IT (LIBB) 24/0900 
24/0945 Amendola, IT (LIBA) 24/1030 
24/1045 Ancona, IT (LIPY) 24/1530 
24/1630 Capodichino, Naples, IT (LIRN) 

Capodichino, Naples, IT (LIRN) 24/1600 4 
24/AR Stuttgart, GE (EDOC) 

Ramstein AB, GE (EDAR) 23/0700 6 
23/0930 Sigonella, IT (LICZ) 23/1300 
23/1530 Ramstein AB, GE (EDAR) 

Stuttgart, GE (EDOC) 22/0700 3 
22/AR Tallin, Estonia (ULTT) 22/1700 
22/AR Stuttgart, GE (EDOC) 
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Appendix E: Test Plan 

Controlled Experiments 

In order to conduct a precise experimental comparison of the two scheduling 

methods, a controlled experiment is suggested. The test is to be conducted by comparing 

the performance of the DAKOTA program to the performance of a human scheduler. In 

order to provide the most meaningful appraisal, resources should be dedicated exclusively 

to the testing for duration of the evaluation. The computer running DAKOTA should not 

have any other tasks running in the background, and preferably a facility separate from 

the schedulers' normal duty station should be used during the testing to minimize outside 

interruptions. 

Two experienced USAFE schedulers will be required for the testing. Their level 

of experience must ensure that they provide a realistic representation of the scheduling 

system currently in use. Each scheduler must be trained in the use of DAKOTA and be 

given ample opportunity to practice and become comfortable with the use of the program. 

They should have any of their questions about the program answered before beginning 

the testing. Another impartial, experienced scheduler, while not necessarily directly 

involved in the testing, should be available to resolve any questions or disputes. 

Task one of the schedulers to produce schedules using USAFE's current system; 

task the other to schedule using the DAKOTA system. In order to prevent any scheduler 

bias, the two schedulers should be randomly assigned to either of the scheduling systems 

for each schedule to be completed. That is, for one schedule, Scheduler A might use the 
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manual scheduling system and Scheduler B the DAKOTA system; on the next sample, 

they may or may not be reversed. 

The impartial scheduler/observer should establish a reasonable time limit for the 

experiments. This time limit will differ for each case, depending on the size of the 

problem. The purpose for the time limit is to provide a reasonable upper bound on the 

amount of effort which can be dedicated to solving the problem. In an actual scheduling 

problem, the upper bound is likely to be the execution time for the scheduled missions 

themselves. 

Analysis of Data 

After the testing environment has been arranged, the next issue for the 

experimenter to consider is the test data. The data collected will be examined for its 

characteristics; it should be representative of USAFE's operational environment. Once 

the data is reviewed, a means of choosing a representative sample will be determined. 

The experimenter should collect historical data on the number of airlift requests 

submitted to US AFE for each day over the previous year. The requests should be broken 

down by the number of requested legs for the travel, as that gives a more realistic 

measure of the level of scheduling effort required. For instance, if a traveler requests 

transportation from Point A, to Point B, and thence to Point C, that should count as three 

legs. 

A one year span should be considered to account for potential seasonality in the 

number of daily airlift requests. A longer period may be considered if the data suggests a 

longer cycle. 
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Once the researcher has the number of requested airlift legs for that time period, 

an analysis ofthat data may be performed. The intent of this analysis is to determine 

what factors may affect the daily workload for the scheduler so that a representative 

sample may be drawn for the testing. First, the data should be evaluated to determine if 

there are any trends apparent. A computer program such as Forecast Pro may prove 

helpful. Any linear trends in the data should be noted. (Has there been a drawdown in 

the forces in Europe over the period? Has there been an increase in the workload in order 

to support the Bosnian peace efforts?) Do the data present any seasonality? Of what 

period? It may seem reasonable to expect to see at least a seven-day period present. 

(Sundays are likely to be a slow day, while the pace may normally increase on Monday 

morning.) Are there any other periods present? Is there a change in the rate of flight 

activity associated with the end of the month or quarter? Do summers, Christmas, or 

other holidays affect the data? In each case, the expert observer must make a 

determination as to the nature of any significant changes in the number of requests. Any 

highly "unusual" data points may be discarded if the experimenter considers them highly 

unlikely to reoccur, as may be the case with a large, one-time conference which required 

a great deal of OSA support, or a one-time safety stand-down with no flying at all. 

Once the experimenter has used his or her best judgment in eliminating any of the 

outlying data points, the remaining data can be classified by the number of requested legs 

for that day in order to facilitate sampling representative data for the testing. 
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Data Sampling 

Several different techniques are discussed in this section to give the experimenter 

an idea of what sampling methods might be considered. The purpose of sampling is to 

draw representative data from the population so that reasonable inferences may be drawn 

from them. 

Simple random sampling. In this sampling method, each element in the 

population has an equal probability of being sampled. This method offers the advantages 

of not requiring any advance knowledge of the population, freedom from classification 

errors, and computational efficiency. Its disadvantages include not taking advantage of 

any advance knowledge about the population and relatively large errors for the sample 

size. (Zikmund, 1994:379; Davis and Cosenza, 1993:228) 

Systematic sampling. Under this sampling method, the first sample is chosen at 

random, and every nth observation thereafter is sampled. This raises the danger of 

periodicity, which could be a factor, particularly if the order of the data is not truly 

random. For instance, if observations are made every seventh day, it is possible that 

increased variability could be introduced into the sample if observations on the same day 

each week are not independent. (Zikmund, 1994:379; Davis and Cosenza, 1993:228) 

Stratified sampling. This sampling method involves dividing the population into 

subgroups or strata, and then sampling randomly from within each stratum. The 

stratification variable is chosen so that it is a "characteristic of the population elements 

known to be related to the dependent variable or other variables of interest." (Zikmund, 

1994:373) Stratified sampling is used when the experimenter suspects an important 
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characteristic distinguishes between the strata and wants to make sure that the difference 

is accounted for in the study. 

Samples are drawn randomly from within each stratum, so it requires accurate 

information on the proportion in each stratum. There are three benefits to stratified 

sampling: 1) Variability in sampling is reduced, 2) We are assured that the sample will 

not fail to include all of the strata in its representation, and 3) We can estimate 

characteristics of each stratum for comparison. (Davis and Cosenza, 1993:228-229) 

Proportionate stratified sampling is conducted when the number of samples 

drawn from each strata is proportional to the relative size of the stratum. 

Disproportionate stratified sampling "is not a problem if the primary purpose of the 

research is to estimate some characteristic separately for each stratum, and if researchers 

are concerned about assessing the differences among strata." (Zikmund, 1994:373) 

Two primary methods of determining the number of strata for the data are 

outlined below. The first is expert opinion, whereby an individual knowledgeable about 

the data determines a meaningful number of strata. The second is the "cumulative square 

root of the frequency" method. (Scheaffer, Mendenhall and Ott, 1990:128-129) This 

second method is illustrated through the use of a fictitious example, where the frequency 

of the number of request legs is recorded, and we seek to determine how to stratify based 

on the number of legs: 

121 



Table 6 

Cumulative Square Root of the Frequency 

# of Legs Frequency ■^Frequency Cumulative ^Frequency 

4 2 1.41 1.41 
5 4 2 3.41 
6 7 2.64 6.06 
7 9 3 9.06 
8 5 2.24 11.30 
9 _3_ 

30 
1.73 13.03 

The principle of this method of stratification is to divide the cumulative frequency 

square root column scale into equal intervals. Assume we wish to define three strata. 

Since the cumulative square root of the frequency is 13.03, we would look for the square 

root of the frequencies within each stratum to be 13.03 * 3 = 4.34 wide. Thus, we would 

like to have the two stratum boundaries as close as possible to 4.34 and 8.68. On our 

cumulative scale, we would pick 3.41 and 9.06, reflecting that the strata should be: 

Table 7 

Strata #1 

Stratum # of Legs 
1 4 or 5 
2 6 or 7 
3 8 or 9 

For another example, if we want to divide the data into 4 strata, each stratum 

would be 13.03 -e- 4 = 3.26 wide. Our stratum boundaries should be as close as possible 

to 3.26, 6.52 and 9.78. On our cumulative scale, we would pick 3.41, 6.06 and 9.06. Our 

strata would be: 
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Table 8 

Strata #2 

Stratum # of Legs 
1 
2 
3 
4 

4 or 5 
6 
7 

8 or 9 

Stratified random or proportional sampling provides the three advantages given 

above, but the primary one for the purpose of testing DAKOTA is that it will assure that 

the sample will not fail to include all of the strata. This will guarantee that we test over 

the full range of the number of requests which the scheduler may expect to encounter. 

The scheduler must assess the data to determine what variable to use for the 

stratification. The scheduler's expert opinion will be key, as he or she considers whether 

to stratify based on the day of the week, each week or month out of the year, or the 

number of request legs per day or per week, or any other potential strata. 

Sample Size 

Once the researcher has decided how to sample the data for use in the experiment, 

the number of samples required must be determined. The greater the number of samples, 

the more confidence we will have in any inferences drawn. Unfortunately, conducting 

this testing as described entails a considerable commitment of resources, so the 

experimenter will undoubtedly wish to economize by limiting the sample size as much as 

possible. The sample size should at least be large enough to invoke the use of the Central 

Limit Theorem, which tells us that if the observations are independent, identically 
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distributed random variables with common mean and finite variance, then the sampling 

distribution of the mean the observations will converge to a standard normal distribution 

with large enough sample size. Mendenhall, Wackerly and Scheaffer recommend that a 

sample size of 30 will ensure that the distribution is approximately normal. (Mendenhall, 

Wackerly and Scheaffer, 1989:319) The means of allocating the 30 samples across the 

strata will need to be determined. One method, proportional allocation, draws a number 

of samples for each stratum based on the proportion with which those strata occur in the 

population. This and other methods of assigning sample sizes to the strata are discussed 

in texts on sampling, such as Scheaffer, Mendenhall and Ott (1990). 

Statistical Testing 

We have already determined that the statistical testing should be performed on 

three main measures of comparison of the two scheduling methods: solution quality 

(flight time, number of aircraft or crews, number of soft time window violations and 

infeasible solutions), computational effort (scheduler workload and number of iterations 

to reach feasibility), and robustness (brittleness and elasticity). 

In performing the statistical tests, the experimenter must determine what 

significance level is desired. The most commonly used "alpha" levels are 0.05, 0.10 or 

0.01, but the experimenter is welcome to choose an alpha which reflects the degree of 

confidence desired. Next, we detail how to perform three different statistical tests, using 

the flight time as the example. 
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Flight Time 

For this test, calculate the amount of flight time required to satisfy the requests 

using each of the scheduling methods. Our null hypothesis is that System A and System 

B produce a schedule which requires the same amount of flight time; the alternative 

hypothesis is that System A produces a schedule requiring greater flight time than 

System B. (Note that we could have chosen a two-tailed test by defining the alternative 

hypothesis as "System A and System B produce a schedule which does not require the 

same amount of flight time".) 

We conduct hypothesis testing to determine if our null hypothesis is reasonable. 

We compare the results using three of the non-parametric tests described in Chapter II, 

starting with the Wilcoxon Signed Rank Test. A simplified example follows, where 

System A and System B both produce six different schedules. For example, on the first 

schedule, System A required 12.2 flight hours to complete the schedule, while System B 

required 12 hours: 
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Table 9 

Wilcoxon Signed Rank Test Example 
(Hours of Flight Time) 

System A System B |Difference| Rank Signed Rank 
12.2 12 0.2 2.5 2.5 
20.4 20 0.4 5 5 
18.1 18 0.1 1 1 
8.8 9 0.2 2.5 -2.5 
14.7 15 0.3 4 -4 
10 10 0 

2 

Test Statistic: 2 
Critical Value: 1 

Conclusion: Reject Null Hypothesis 

Our test statistic is the sum of the signed ranks, or 2. We then compare that 

against the critical value of 1 which can be found in texts on nonparametric statistics 

(Mendenhall, Wackerly and Scheaffer, 1989:780). For a detailed description of this 

statistical test, refer to (Golden and Stewart, 1985:210-212). 

Our null hypothesis was that the two systems produce a schedule which requires 

the same amount of flight time, but our test suggests that we reject the null hypothesis at 

an alpha level of 0.05 chosen for this illustration. From this we surmise that the mean 

flight time from System A is larger than that from System B. Since the object is to 

minimize the flight time, System B would be preferred. 
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Recall that the Wilcoxon Signed Rank Test requires several assumptions: 

(Golden and Stewart, 1985:210-212) 

a. The data consist of matched pairs (xi5 Vj), with the difference defined as 

dj = Xj - ys 

b. Each d; is a continuous random variable 

c. The distribution of each dj must be symmetric 

d. The pairs (xj5 y;) represent a random sample from a bivariate distribution 

The researcher needs to consider assumption c. in particular, i.e., that the 

differences are symmetrically distributed. Plotting the differences in a box plot can give 

a visual measure of the symmetry of the distribution; calculating the skewness can give a 

numerical measure. 

If the researcher determines that the distribution is too asymmetric, or if the two 

methods tie too often for a useful comparison with the Wilcoxon Signed Rank Test, then 

the McNemar Test for Significance of Changes is available for the statistical test. In the 

McNemar Test, the (Xi5 Yj) pairs are classified into (1,0) or (0,1) pairs (based on which of 

the two heuristics produces the best result on the measure of interest) according to the 

table below: 
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Table 10 

McNemar Test for Significance of Changes Classifications 

Classification of Y; 

Classification 
ofX; 

Yi = 0 Yj=l 

X; = 0 Heuristics X and Y Tie 
Heuristic Y 
Outperforms 
Heuristic X 

X, = l 
Heuristic X 
Outperforms 
Heuristic Y 

Heuristics X and Y Tie 

The cases where the two heuristics tie are discarded. The number of (0,1) and 

(1,0) pairs are counted for the statistical test. Using our same example from before: 

Table 11 

McNemar Test for Significance of Changes Example 
(Hours of Flight Time) 

System A System B Pairs 
12.2 12 (0,1) 
20.4 20 (0,1) 
18.1 18 (0,1) 
8.8 9 (1,0) 
14.7 15 (1,0) 
10 10 - 

Test Statistic: 3 
Critical Value: 1 

Conclusion: Reject Null Hypothesis 

We eliminated the case where the systems tied, and compare the three (0,1) pairs 

to the two (1,0) pairs. Since our test statistic is greater than the critical value, at an alpha 

level of 0.05, we reject the null hypothesis and again conclude that System B outperforms 

System A in producing a schedule which required the least flight time. 

128 



The test statistic and rejection rule both depend on the sample size, and their 

calculation is fairly complicated. The interested reader may refer to a nonparametric 

statistics text for details. (Conover, 1980:130-133) 

The third statistical test to consider in performing the statistical testing is the Sign 

Test. The sign test is not as powerful a statistical test as the Wilcoxon Signed Rank Test; 

however, it does not require the same stringent assumptions as the Wilcoxon Signed 

Rank Test. (Golden and Stewart, 1985:212) If we are testing two heuristics (X and Y) 

and assume that they are equally likely to produce a better solution on the measure of 

interest, i.e., P[y; - Xj > 0] = 0.5, then the probability that n or more positive (or negative, 

for that matter) differences would be found in m observations is: 

m 

£(™)(0.5)*-(0.5r-* (9) 
k=n 

A low probability would lend credence to the supposition that the two heuristics 

are not equally likely to produce the better solution. 

Using the same example from above, we again eliminate the tied case, considering 

only the three positive differences and the two negative differences, we find the 

probability of three or more positive differences out of the five pairs: 

S(k)(°-5)k-(a5)5~k=a5 (10> 
k=3 

Obviously, with such a limited sample size this test did not allow us to make any 

conclusive inferences about the population. 
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Other Measures of Comparison 

We used the three statistical tests described above to thoroughly review how to 

test the performances of the scheduling methods with regards to the flight time required 

to execute the schedule produced. Next, we consider the other measures of merit 

proposed for statistical testing. 

Number Of Aircraft Or Crews 

The number of aircraft or crews required to effect the produced schedules can be 

tested simultaneously with the testing of the flight time described above by keeping track 

of the number of missions required to support the requests. The difference dj between the 

number of missions required by each of the scheduling methods would be tested for 

significance using the same statistical tests as described above. Rejection of the 

hypothesis that both methods require the same number of aircraft and crews would 

suggest that one of the methods performs better on that measure of merit. 

Number Of Soft Time Window Violations 

A determination of which scheduling method produces the fewest soft time 

window violations can be made by counting the number of legs which do not meet the 

(soft) time windows requested by the traveler, and comparing them using the statistical 

tests described above. 

Infeasible Solutions 

The number of hard time window violations is a measure of the number of 

infeasible solutions. This can be statistically tested as described above. 
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Scheduler Workload 

The next series of tests is designed to compare the scheduler workload in 

constructing the schedules. Since the CPU time is a less meaningful measure in 

USAFE's scheduling than the schedulers' effort, this test is conducted by timing each of 

the schedulers' "user time" as they complete their tasks under the test plan's controlled 

conditions. It is particularly important for the investigator to insure that the experiment is 

randomized in order to avoid any systematic bias between the schedulers. 

User time is the time measured from the point when a scheduler commences work 

on that particular schedule until the "flyable" schedule is completed or the task is 

abandoned as infeasible. The commencement time must account for setup time, 

including the time to start the computer program. In order to provide the most 

meaningful appraisal, resources and personnel should be dedicated exclusively to the 

testing for duration of the evaluation. The computer running DAKOTA should not have 

any other tasks running in the background, and preferably a separate facility should be 

used during the testing to minimize outside interruptions. 

The time a scheduler spends conferring and coordinating on the telephone, 

making refinements and improvements to the schedule is also included in the user time, 

as this is a reasonable subtask of scheduling which affects any scheduling system. Time 

spent on breaks should not be included; in this context, time when the computer program 

is computing a schedule should not be considered a "break". Note that time spent 

collecting the initial information (i.e., requests) need not be considered, as this will be 

identical for each scheduling system. Any questions about what specific tasks need to be 
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considered in the user time are resolved by the impartial scheduler/observer. The driving 

concern is consistency, in order to produce a meaningful comparison. 

The schedulers can be timed as they solved the previous series of problems. The 

time required to produce both schedules, manually and through the use of DAKOTA, can 

be statistically compared using the same statistical tests previously outlined. 

Number Of Iterations To Reach Feasibility 

This test is more complicated to conduct. As a schedule is being produced, the 

scheduler will have to try to resolve the soft time window violations. This is done by 

contacting the passengers or point of contact for the affected requests to determine if an 

alternative time window is acceptable to them, and then making the appropriate changes 

to the schedule. Clearly, this will be a time-consuming process. This test counts the 

number of times this process is iterated until the schedule is complete. The same 

statistical tests used earlier may be applied, but the experimenter should carefully 

consider if the definitions of iterations are comparable. If a valid definition that applies to 

both systems cannot be determined, this test should not be conducted. 

Brittleness 

In order to conduct this test, we take the completed schedules already produced in 

the previous experiments and randomly pick 10% of the request legs and delay their 

requested arrival times by one hour. We then randomly pick another 10% of the request 

legs and advance their requested arrival times by one hour. Without attempting to make 

any revisions to the schedules to accommodate the changes in the requests, we simply 
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count the number of new soft and hard (i.e., infeasible) time window violations, 

excluding those violations we already counted when testing the number of soft time 

window violations and infeasible solutions. The least brittle scheduling method is the 

one which has the smallest increase in those measures in response to the perturbations in 

the requests. The statistical tests are conducted as described above. 

Elasticity 

Finally, for this comparison we keep the requested departure and arrival times the 

same, but we perturb the time windows for the request. For a randomly chosen 10% of 

the legs we double the size of the time window; for another random 10% we halve its 

size; for another 10% we convert soft time windows into hard; and for another 10% we 

convert the hard time windows into soft. Again, without making any revisions to the 

schedules to accommodate the changes in the request time windows, we count the 

number of new soft and hard time window violations for both scheduling methods and 

compare them using the statistical tests described earlier. 

Summary 

As the tests are planned and conducted, USAFE personnel may recognize other 

elements that they wish to test in the systems. It may be most effective to incorporate 

these tests with those outlined here. A pilot test (a smaller scale version of the full test) 

may prove beneficial in "ironing out" any "kinks" in the test plan or its implementation. 

While it is recognized that finding the time and personnel to assign to the testing 

will be difficult, the more controlled an experiment that can be conducted, the higher the 

confidence one will have in the test results. 
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